We refine and generalize what is known about coresets for classification problems via the sensitivity sampling framework. Such coresets seek the smallest possible subsets of input data, so one can optimize a loss function on the coreset and ensure approximation guarantees with respect to the original data. Our analysis provides the first no dimensional coresets, so the size does not depend on the dimension. Moreover, our results are general, apply for distributional input and can use iid samples, so provide sample complexity bounds, and work for a variety of loss functions. A key tool we develop is a Radamacher complexity version of the main sensitivity sampling approach, which can be of independent interest.
Model editing is a growing area focused on updating the knowledge embedded within models. Among the various methodologies, ROME and MEMIT stand out as leading "locate-and-edit" model editing techniques. While MEMIT enables batched editing of memories, ROME is limited to changing one fact at a time. This paper introduces a unifying framework that brings ROME and MEMIT under a single conceptual umbrella, optimizing for the same goal, which we call the "preservation-memorization" objective. This objective aims to preserve the representations of certain selected vectors while memorizing the representations of new factual information. Specifically, ROME optimizes this objective using an equality constraint, whereas MEMIT employs a more flexible least-square constraint. In addition to making batched edits, MEMIT also edits the model at multiple layers. We disentangle the distribution of edits to multiple layers from the optimization objective of MEMIT and show that these edit-distribution algorithms should be considered separate entities worthy of their own line of research. Finally, we present EMMET - an Equality-constrained Mass Model Editing algorithm for Transformers, a new batched memory-editing algorithm. With EMMET, we present a closed form solution for the equality-constrained version of the preservation-memorization objective. We show that EMMET is able to perform batched-edits on par with MEMIT up to a batch-size of 256 and discuss the challenges in stabilizing EMMET. By articulating the "locate-and-edit" model editing algorithms under a simple conceptual framework of "preservation-memorization", we aim to bridge the gap between intuition and mathematics and hope to simplify the journey for future researchers in model editing.
Functional data describe a wide range of processes encountered in practice, such as growth curves and spectral absorption. Functional regression considers a version of regression, where both the response and covariates are functional data. Evaluating both the functional relatedness between the response and covariates and the relatedness of a multivariate response function can be challenging. In this paper, we propose a solution for both these issues, by means of a functional Gaussian graphical regression model. It extends the notion of conditional Gaussian graphical models to partially separable functions. For inference, we propose a double-penalized estimator. Additionally, we present a novel adaptation of Kullback-Leibler cross-validation tailored for graph estimators which accounts for precision and regression matrices when the population presents one or more sub-groups, named joint Kullback-Leibler cross-validation. Evaluation of model performance is done in terms of Kullback-Leibler divergence and graph recovery power. We illustrate the method on a air pollution dataset.
LiDAR semantic segmentation frameworks predominantly leverage geometry-based features to differentiate objects within a scan. While these methods excel in scenarios with clear boundaries and distinct shapes, their performance declines in environments where boundaries are blurred, particularly in off-road contexts. To address this, recent strides in 3D segmentation algorithms have focused on harnessing raw LiDAR intensity measurements to improve prediction accuracy. Despite these efforts, current learning-based models struggle to correlate the intricate connections between raw intensity and factors such as distance, incidence angle, material reflectivity, and atmospheric conditions. Building upon our prior work, this paper delves into the advantages of employing calibrated intensity (also referred to as reflectivity) within learning-based LiDAR semantic segmentation frameworks. We initially establish that incorporating reflectivity as an input enhances the existing LiDAR semantic segmentation model. Furthermore, we present findings that enable the model to learn to calibrate intensity can boost its performance. Through extensive experimentation on the off-road dataset Rellis-3D, we demonstrate notable improvements. Specifically, converting intensity to reflectivity results in a 4% increase in mean Intersection over Union (mIoU) when compared to using raw intensity in Off-road scenarios. Additionally, we also investigate the possible benefits of using calibrated intensity in semantic segmentation in urban environments (SemanticKITTI) and cross-sensor domain adaptation.
We present an algorithm to solve the dispersive depth-averaged Serre-Green-Naghdi (SGN) equations using patch-based adaptive mesh refinement. These equations require adding additional higher derivative terms to the nonlinear shallow water equations. This has been implemented as a new component of the open source GeoClaw software that is widely used for modeling tsunamis, storm surge, and related hazards, improving its accuracy on shorter wavelength phenomena. We use a formulation that requires solving an elliptic system of equations at each time step, making the method implicit. The adaptive algorithm allows different time steps on different refinement levels, and solves the implicit equations level by level. Computational examples are presented to illustrate the stability and accuracy on a radially symmetric test case and two realistic tsunami modeling problems, including a hypothetical asteroid impact creating a short wavelength tsunami for which dispersive terms are necessary.
Many scientific and engineering applications require fitting regression models that are nonlinear in the parameters. Advances in computer hardware and software in recent decades have made it easier to fit such models. Relative to fitting regression models that are linear in the parameters, however, fitting nonlinear regression models is more complicated. In particular, software like the $\texttt{nls}$ R function requires care in how the model is parameterized and how initial values are chosen for the maximum likelihood iterations. Often special diagnostics are needed to detect and suggest approaches for dealing with identifiability problems that can arise with such model fitting. When using Bayesian inference, there is the added complication of having to specify (often noninformative or weakly informative) prior distributions. Generally, the details for these tasks must be determined for each new nonlinear regression model. This paper provides a step-by-step procedure for specifying these details for any appropriate nonlinear regression model. Following the procedure will result in a numerically robust algorithm for fitting the nonlinear regression model. We illustrate the methods with three different nonlinear models that are used in the analysis of experimental fatigue data and we include two detailed numerical examples.
Ensuring the security and reliability of machine learning frameworks is crucial for building trustworthy AI-based systems. Fuzzing, a popular technique in secure software development lifecycle (SSDLC), can be used to develop secure and robust software. Popular machine learning frameworks such as PyTorch and TensorFlow are complex and written in multiple programming languages including C/C++ and Python. We propose a dynamic analysis pipeline for Python projects using the Sydr-Fuzz toolset. Our pipeline includes fuzzing, corpus minimization, crash triaging, and coverage collection. Crash triaging and severity estimation are important steps to ensure that the most critical vulnerabilities are addressed promptly. Furthermore, the proposed pipeline is integrated in GitLab CI. To identify the most vulnerable parts of the machine learning frameworks, we analyze their potential attack surfaces and develop fuzz targets for PyTorch, TensorFlow, and related projects such as h5py. Applying our dynamic analysis pipeline to these targets, we were able to discover 3 new bugs and propose fixes for them.
For minimization problems without 2nd derivative information, methods that estimate Hessian ma- trices can be very effective. However, conventional techniques generate dense matrices that are prohibitive for large problems. Limited-memory compact representations express the dense arrays in terms of a low rank representation and have become the state-of-the-art for software implementations on large deterministic problems. We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices. We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.
Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.