亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) are increasingly augmented with external tools and commercial services into LLM-integrated systems. While these interfaces can significantly enhance the capabilities of the models, they also introduce a new attack surface. Manipulated integrations, for example, can exploit the model and compromise sensitive data accessed through other interfaces. While previous work primarily focused on attacks targeting a model's alignment or the leakage of training data, the security of data that is only available during inference has escaped scrutiny so far. In this work, we demonstrate the vulnerabilities associated with external components and introduce a systematic approach to evaluate confidentiality risks in LLM-integrated systems. We identify two specific attack scenarios unique to these systems and formalize these into a tool-robustness framework designed to measure a model's ability to protect sensitive information. Our findings show that all examined models are highly vulnerable to confidentiality attacks, with the risk increasing significantly when models are used together with external tools.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · · 基準 · 數據集 ·
2024 年 12 月 18 日

Query suggestion, a technique widely adopted in information retrieval, enhances system interactivity and the browsing experience of document collections. In cross-modal retrieval, many works have focused on retrieving relevant items from natural language queries, while few have explored query suggestion solutions. In this work, we address query suggestion in cross-modal retrieval, introducing a novel task that focuses on suggesting minimal textual modifications needed to explore visually consistent subsets of the collection, following the premise of ''Maybe you are looking for''. To facilitate the evaluation and development of methods, we present a tailored benchmark named CroQS. This dataset comprises initial queries, grouped result sets, and human-defined suggested queries for each group. We establish dedicated metrics to rigorously evaluate the performance of various methods on this task, measuring representativeness, cluster specificity, and similarity of the suggested queries to the original ones. Baseline methods from related fields, such as image captioning and content summarization, are adapted for this task to provide reference performance scores. Although relatively far from human performance, our experiments reveal that both LLM-based and captioning-based methods achieve competitive results on CroQS, improving the recall on cluster specificity by more than 115% and representativeness mAP by more than 52% with respect to the initial query. The dataset, the implementation of the baseline methods and the notebooks containing our experiments are available here: //paciosoft.com/CroQS-benchmark/

Convolutional Neural Networks (CNNs) are crucial in various applications, but their deployment on resource-constrained edge devices poses challenges. This study presents the Sum-of-Products (SOP) units for convolution, which utilize low-latency left-to-right bit-serial arithmetic to minimize response time and enhance overall performance. The study proposes a methodology for fusing multiple convolution layers to reduce off-chip memory communication and increase overall performance. An effective mechanism detects and skips inefficient convolutions after ReLU layers, minimizing power consumption without compromising accuracy. Furthermore, efficient tile movement guarantees uniform access to the fusion pyramid. An analysis demonstrates the utile stride strategy improves operational intensity. Two designs cater to varied demands: one focuses on minimal response time for mission-critical applications, and another focuses on resource-constrained devices with comparable latency. This approach notably reduced redundant computations, improving the efficiency of CNN deployment on edge devices.

Interactive theorem provers are complex systems that require sophisticated platform efforts - and hence systems programming environments - to manage effectively. The Isabelle platform exemplifies this with its Isabelle/Scala systems programming environment, which has proven to be very successful. In contrast, much of the project infrastructure has relied on external tooling in the past, despite shortcomings. For continuous integration, the previous system employed a Jenkins server, which did not adequately support user-submitted Isabelle builds and faced issues with reliability and performance. In this work, we present our design and implementation of a new Isabelle build manager that replaces the old continuous integration system, fully implemented within Isabelle/Scala. We illustrate how our implementation utilizes different modules of the environment, which supported all aspects of the build manager well.

Zero-Knowledge Proofs (ZKPs) have emerged as an important cryptographic technique allowing one party (prover) to prove the correctness of a statement to some other party (verifier) and nothing else. ZKPs give rise to user's privacy in many applications such as blockchains, digital voting, and machine learning. Traditionally, ZKPs suffered from poor scalability but recently, a sub-class of ZKPs known as Zero-knowledge Succinct Non-interactive ARgument of Knowledges (zk-SNARKs) have addressed this challenge. They are getting significant attention and are being implemented by many public libraries. In this paper, we present a novel scalable architecture that is suitable for accelerating the zk-SNARK prover compute on FPGAs. We focus on the multi-scalar multiplication (MSM) that accounts for the majority of computation time spent in zk-SNARK systems. The MSM calculations extensive rely on modular arithmetic so highly optimized Intel IP Libraries for modular arithmetic are used. The proposed architecture exploits the parallelism inherent to MSM and is implemented using the Intel OneAPI framework for FPGAs. Our implementation runs 110x-150x faster compared to reference software library, uses a generic curve form in Jacobian coordinates and is the first to report FPGA hardware acceleration results for BLS12-381 and BN128 family of elliptic curves.

The domain of Natural Language Processing (NLP) has experienced notable progress in the evolution of Bangla Question Answering (QA) systems. This paper presents a comprehensive review of seven research articles that contribute to the progress in this domain. These research studies explore different aspects of creating question-answering systems for the Bangla language. They cover areas like collecting data, preparing it for analysis, designing models, conducting experiments, and interpreting results. The papers introduce innovative methods like using LSTM-based models with attention mechanisms, context-based QA systems, and deep learning techniques based on prior knowledge. However, despite the progress made, several challenges remain, including the lack of well-annotated data, the absence of high-quality reading comprehension datasets, and difficulties in understanding the meaning of words in context. Bangla QA models' precision and applicability are constrained by these challenges. This review emphasizes the significance of these research contributions by highlighting the developments achieved in creating Bangla QA systems as well as the ongoing effort required to get past roadblocks and improve the performance of these systems for actual language comprehension tasks.

Large Language Models (LLMs) are increasingly explored as knowledge bases (KBs), yet current evaluation methods focus too narrowly on knowledge retention, overlooking other crucial criteria for reliable performance. In this work, we rethink the requirements for evaluating reliable LLM-as-KB usage and highlight two essential factors: factuality, ensuring accurate responses to seen and unseen knowledge, and consistency, maintaining stable answers to questions about the same knowledge. We introduce UnseenQA, a dataset designed to assess LLM performance on unseen knowledge, and propose new criteria and metrics to quantify factuality and consistency, leading to a final reliability score. Our experiments on 26 LLMs reveal several challenges regarding their use as KBs, underscoring the need for more principled and comprehensive evaluation.

Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at //ieee-dataport.org/13824, as well as the GDSG algorithm codes at //github.com/qiyu3816/GDSG.

Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.

Capsule Networks (CapsNets) have been re-introduced as a more compact and interpretable alternative to standard deep neural networks. While recent efforts have proved their compression capabilities, to date, their interpretability properties have not been fully assessed. Here, we conduct a systematic and principled study towards assessing the interpretability of these types of networks. Moreover, we pay special attention towards analyzing the level to which part-whole relationships are indeed encoded within the learned representation. Our analysis in the MNIST, SVHN, PASCAL-part and CelebA datasets suggest that the representations encoded in CapsNets might not be as disentangled nor strictly related to parts-whole relationships as is commonly stated in the literature.

Natural Language Inference (NLI) tasks require identifying the relationship between sentence pairs, typically classified as entailment, contradiction, or neutrality. While the current state-of-the-art (SOTA) model, Entailment Few-Shot Learning (EFL), achieves a 93.1% accuracy on the Stanford Natural Language Inference (SNLI) dataset, further advancements are constrained by the dataset's limitations. To address this, we propose a novel approach leveraging synthetic data augmentation to enhance dataset diversity and complexity. We present UnitedSynT5, an advanced extension of EFL that leverages a T5-based generator to synthesize additional premise-hypothesis pairs, which are rigorously cleaned and integrated into the training data. These augmented examples are processed within the EFL framework, embedding labels directly into hypotheses for consistency. We train a GTR-T5-XL model on this expanded dataset, achieving a new benchmark of 94.7% accuracy on the SNLI dataset, 94.0% accuracy on the E-SNLI dataset, and 92.6% accuracy on the MultiNLI dataset, surpassing the previous SOTA models. This research demonstrates the potential of synthetic data augmentation in improving NLI models, offering a path forward for further advancements in natural language understanding tasks.

北京阿比特科技有限公司