亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is focused on the approximation of the Euler equation of compressible fluid dynamics on a staggered mesh. To this aim, the flow parameter are described by the velocity, the density and the internal energy. The thermodynamic quantities are described on the elements of the mesh, and this the approximation is only $L^2$, while the kinematic quantities are globally continuous. The method is general in the sense that the thermodynamical and kinetic parameters are described by arbitrary degree polynomials, in practice the difference between the degrees of the kinematic parameters and the thermodynamical ones is equal to $1$. The integration in time is done using a defect correction method. As such, there is no hope that the limit solution, if it exists, will be a weak solution of the problem. In order to guaranty this property, we introduce a general correction method in the spirit of the Lagrangian stagered method described in \cite{Svetlana,MR4059382, MR3023731}, and we prove a Lax Wendroff theorem. The proof is valid for multidimensional version of the scheme, though all the numerical illustrations, on classical benchmark problems, are all one dimensional because we have an easy access to the exact solution for comparison. We conclude by explanning that the method is general and can be used in a different setting as the specific one used here, for example finite volume, of discontinuous Galerkin methods.

相關內容

The Schl\"omilch integral, a generalization of the Dirichlet integral on the simplex, and related probability distributions are reviewed. A distribution that unifies several generalizations of the Dirichlet distribution is presented, with special cases including the scaled Dirichlet distribution and certain Dirichlet mixture distributions. Moments and log-ratio covariances are found, where tractable. The normalization of the distribution motivates a definition, in terms of a simplex integral representation, of complete homogeneous symmetric polynomials of fractional degree.

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

In this article, a numerical scheme to find approximate solutions to the McKendrick-Von Foerster equation with diffusion (M-V-D) is presented. The main difficulty in employing the standard analysis to study the properties of this scheme is due to presence of nonlinear and nonlocal term in the Robin boundary condition in the M-V-D. To overcome this, we use the abstract theory of discretizations based on the notion of stability threshold to analyze the scheme. Stability, and convergence of the proposed numerical scheme are established.

We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. That is, we are concerned with advecting velocity fields that are spatially Sobolev regular and data that are merely integrable. We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. We prove that on unstructured regular meshes the rate of convergence of approximate solutions generated by the upwind scheme towards the unique solution of the continuous model is at least one. The numerical error is estimated in terms of logarithmic Kantorovich-Rubinstein distances and provides thus a bound on the rate of weak convergence.

This paper studies robust regression for data on Riemannian manifolds. Geodesic regression is the generalization of linear regression to a setting with a manifold-valued dependent variable and one or more real-valued independent variables. The existing work on geodesic regression uses the sum-of-squared errors to find the solution, but as in the classical Euclidean case, the least-squares method is highly sensitive to outliers. In this paper, we use M-type estimators, including the $L_1$, Huber and Tukey biweight estimators, to perform robust geodesic regression, and describe how to calculate the tuning parameters for the latter two. We also show that, on compact symmetric spaces, all M-type estimators are maximum likelihood estimators, and argue for the overall superiority of the $L_1$ estimator over the $L_2$ and Huber estimators on high-dimensional manifolds and over the Tukey biweight estimator on compact high-dimensional manifolds. Results from numerical examples, including analysis of real neuroimaging data, demonstrate the promising empirical properties of the proposed approach.

We introduced the least-squares ReLU neural network (LSNN) method for solving the linear advection-reaction problem with discontinuous solution and showed that the method outperforms mesh-based numerical methods in terms of the number of degrees of freedom. This paper studies the LSNN method for scalar nonlinear hyperbolic conservation law. The method is a discretization of an equivalent least-squares (LS) formulation in the set of neural network functions with the ReLU activation function. Evaluation of the LS functional is done by using numerical integration and conservative finite volume scheme. Numerical results of some test problems show that the method is capable of approximating the discontinuous interface of the underlying problem automatically through the free breaking lines of the ReLU neural network. Moreover, the method does not exhibit the common Gibbs phenomena along the discontinuous interface.

Estimating the mixing density of a mixture distribution remains an interesting problem in statistics literature. Using a stochastic approximation method, Newton and Zhang (1999) introduced a fast recursive algorithm for estimating the mixing density of a mixture. Under suitably chosen weights the stochastic approximation estimator converges to the true solution. In Tokdar et. al. (2009) the consistency of this recursive estimation method was established. However, the proof of consistency of the resulting estimator used independence among observations as an assumption. Here, we extend the investigation of performance of Newton's algorithm to several dependent scenarios. We first prove that the original algorithm under certain conditions remains consistent when the observations are arising form a weakly dependent process with fixed marginal with the target mixture as the marginal density. For some of the common dependent structures where the original algorithm is no longer consistent, we provide a modification of the algorithm that generates a consistent estimator.

This paper investigates the recovery of a spectrally sparse signal from its partially revealed noisy entries within the framework of spectral compressive sensing. Nonconvex optimization approaches have recently been proposed based on low-rank Hankel matrix completion and projected gradient descent (PGD). The PGD however involves unknown tuning parameters and its theoretical analysis is available only in the absence of noise. In this paper, we propose a hyperparameter-free, vanilla gradient descent (VGD) algorithm and prove that the VGD enables robust recovery of an $N$-dimensional $K$-spectrally-sparse signal from order $K^2 log^2N$ number of noisy samples under coherence and other mild conditions. The above sample complexity increases by factor $logN$ as compared with PGD without noise. Numerical simulations are provided that corroborate our analysis and show advantageous performances of VGD.

Stiffener layout optimization of complex surfaces is fulfilled within the framework of topology optimization. A combined parameterization method is developed in two aspects. One is to parameterize the material distribution of the stiffener layout by means of B-spline. The other is to build the mapping relationship from the known 3D surface mesh of the thin-walled structure to its parametric domain by means of mesh parameterization. The influence of mesh parameterization upon the stiffener layout is discussed to reveal the matching issue of the combined parameterization. 3D complex surfaces represented by the triangular mesh can be dealt with even though analytical parametric equations are not available. Some numerical examples are solved to demonstrate the direct advantage and effectiveness of the proposed method.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司