Nowadays, Question Answering (QA) tasks receive significant research focus, particularly with the development of Large Language Model (LLM) such as Chat GPT [1]. LLM can be applied to various domains, but it contradicts the principles of information transmission when applied to the Islamic domain. In Islam we strictly regulates the sources of information and who can give interpretations or tafseer for that sources [2]. The approach used by LLM to generate answers based on its own interpretation is similar to the concept of tafseer, LLM is neither an Islamic expert nor a human which is not permitted in Islam. Indonesia is the country with the largest Islamic believer population in the world [3]. With the high influence of LLM, we need to make evaluation of LLM in religious domain. Currently, there is only few religious QA dataset available and none of them using Sirah Nabawiyah especially in Indonesian Language. In this paper, we propose the Question Answering Sirah Nabawiyah (QASiNa) dataset, a novel dataset compiled from Sirah Nabawiyah literatures in Indonesian language. We demonstrate our dataset by using mBERT [4], XLM-R [5], and IndoBERT [6] which fine-tuned with Indonesian translation of SQuAD v2.0 [7]. XLM-R model returned the best performance on QASiNa with EM of 61.20, F1-Score of 75.94, and Substring Match of 70.00. We compare XLM-R performance with Chat GPT-3.5 and GPT-4 [1]. Both Chat GPT version returned lower EM and F1-Score with higher Substring Match, the gap of EM and Substring Match get wider in GPT-4. The experiment indicate that Chat GPT tends to give excessive interpretations as evidenced by its higher Substring Match scores compared to EM and F1-Score, even after providing instruction and context. This concludes Chat GPT is unsuitable for question answering task in religious domain especially for Islamic religion.
Federated Learning (FL) has become an emerging norm for distributed model training, which enables multiple devices cooperatively to train a shared model utilizing their own datasets scheduled by a central server while keeping private data localized. However, during the training process, the non-independent-and-identically-distributed (Non-IID) data generated on heterogeneous clients and frequent communication across participants may significantly influence the training performance, slow down the convergent rate, and increase communication consumption. In this paper, we ameliorate the standard stochastic gradient descent approach by introducing the aggregated gradients at each local update epoch and propose an adaptive learning rate iterative algorithm that further takes the deviation between the local parameter and global parameter into account. The aforementioned adaptive learning rate design mechanism requires local information of all clients, which is challenging as there is no communication during the local update epochs. To obtain a decentralized adaptive learning rate for each client, we introduce the mean-field approach by utilizing two mean-field terms to estimate the average local parameters and gradients respectively without exchanging clients' local information with each other over time. Through theoretical analysis, we prove that our method can provide the convergence guarantee for model training and derive a convergent upper bound for the client drifting term. Extensive numerical results show that our proposed framework is superior to the state-of-the-art FL schemes in both model accuracy and convergent rate on real-world datasets with IID and Non-IID data distribution.
Graph Neural Networks (GNNs) play a crucial role in various fields. However, most existing deep graph learning frameworks assume pre-stored static graphs and do not support training on graph streams. In contrast, many real-world graphs are dynamic and contain time domain information. We introduce GNNFlow, a distributed framework that enables efficient continuous temporal graph representation learning on dynamic graphs on multi-GPU machines. GNNFlow introduces an adaptive time-indexed block-based data structure that effectively balances memory usage with graph update and sampling operation efficiency. It features a hybrid GPU-CPU graph data placement for rapid GPU-based temporal neighborhood sampling and kernel optimizations for enhanced sampling processes. A dynamic GPU cache for node and edge features is developed to maximize cache hit rates through reuse and restoration strategies. GNNFlow supports distributed training across multiple machines with static scheduling to ensure load balance. We implement GNNFlow based on DGL and PyTorch. Our experimental results show that GNNFlow provides up to 21.1x faster continuous learning than existing systems.
Realistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: //alvinliu0.github.io/projects/HumanGaussian
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
While performance of many text classification tasks has been recently improved due to Pre-trained Language Models (PLMs), in this paper we show that they still suffer from a performance gap when the underlying distribution of topics changes. For example, a genre classifier trained on \textit{political} topics often fails when tested on documents about \textit{sport} or \textit{medicine}. In this work, we quantify this phenomenon empirically with a large corpus and a large set of topics. Consequently, we verify that domain transfer remains challenging both for classic PLMs, such as BERT, and for modern large models, such as GPT-3. We also suggest and successfully test a possible remedy: after augmenting the training dataset with topically-controlled synthetic texts, the F1 score improves by up to 50\% for some topics, nearing on-topic training results, while others show little to no improvement. While our empirical results focus on genre classification, our methodology is applicable to other classification tasks such as gender, authorship, or sentiment classification. The code and data to replicate the experiments are available at //github.com/dminus1/genre
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence. Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion. Despite achieving reasonable results, these approaches face challenges in maintaining temporal consistency throughout the animation due to the lack of temporal modeling and poor preservation of reference identity. In this work, we introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity. To achieve this, we first develop a video diffusion model to encode temporal information. Second, to maintain the appearance coherence across frames, we introduce a novel appearance encoder to retain the intricate details of the reference image. Leveraging these two innovations, we further employ a simple video fusion technique to encourage smooth transitions for long video animation. Empirical results demonstrate the superiority of our method over baseline approaches on two benchmarks. Notably, our approach outperforms the strongest baseline by over 38% in terms of video fidelity on the challenging TikTok dancing dataset. Code and model will be made available.
This paper introduces WordArt Designer, a user-driven framework for artistic typography synthesis, relying on the Large Language Model (LLM). The system incorporates four key modules: the LLM Engine, SemTypo, StyTypo, and TexTypo modules. 1) The LLM Engine, empowered by the LLM (e.g., GPT-3.5), interprets user inputs and generates actionable prompts for the other modules, thereby transforming abstract concepts into tangible designs. 2) The SemTypo module optimizes font designs using semantic concepts, striking a balance between artistic transformation and readability. 3) Building on the semantic layout provided by the SemTypo module, the StyTypo module creates smooth, refined images. 4) The TexTypo module further enhances the design's aesthetics through texture rendering, enabling the generation of inventive textured fonts. Notably, WordArt Designer highlights the fusion of generative AI with artistic typography. Experience its capabilities on ModelScope: //www.modelscope.cn/studios/WordArt/WordArt.
Our research focuses on the crucial challenge of discerning text produced by Large Language Models (LLMs) from human-generated text, which holds significance for various applications. With ongoing discussions about attaining a model with such functionality, we present supporting evidence regarding the feasibility of such models. We evaluated our models on multiple datasets, including Twitter Sentiment, Football Commentary, Project Gutenberg, PubMedQA, and SQuAD, confirming the efficacy of the enhanced detection approaches. These datasets were sampled with intricate constraints encompassing every possibility, laying the foundation for future research. We evaluate GPT-3.5-Turbo against various detectors such as SVM, RoBERTa-base, and RoBERTa-large. Based on the research findings, the results predominantly relied on the sequence length of the sentence.
We study the theoretical aspects of Reinforced Language Models (RLMs) from a bi-objective optimization perspective. Specifically, we consider the RLMs as a Pareto optimization problem that maximizes the two conflicting objectives, i.e., reward objective and likelihood objectives, simultaneously. Our main contribution consists of three parts. First, we establish the theoretical foundations of RLM as a Pareto optimization problem by presenting Reward Upper BOund (RUBO) and Pareto optimality. Our theoretical outcomes are supported by not only deductive proofs but also empirical results. Second, we propose Reward Dropout, a simple yet powerful method that guarantees to improve a bi-objective optimization of RLM. Lastly, we demonstrate that the Reward Dropout is consistently effective across five benchmark datasets and four benchmark LLMs, meaning that the Reward Dropout significantly improves the optimization performance of RLMs.
Nowadays, the research on Large Vision-Language Models (LVLMs) has been significantly promoted thanks to the success of Large Language Models (LLM). Nevertheless, these Vision-Language Models (VLMs) are suffering from the drawback of hallucination -- due to insufficient understanding of vision and language modalities, VLMs may generate incorrect perception information when doing downstream applications, for example, captioning a non-existent entity. To address the hallucination phenomenon, on the one hand, we introduce a Contrastive Instruction Evaluation Method (CIEM), which is an automatic pipeline that leverages an annotated image-text dataset coupled with an LLM to generate factual/contrastive question-answer pairs for the evaluation of the hallucination of VLMs. On the other hand, based on CIEM, we further propose a new instruction tuning method called CIT (the abbreviation of Contrastive Instruction Tuning) to alleviate the hallucination of VLMs by automatically producing high-quality factual/contrastive question-answer pairs and corresponding justifications for model tuning. Through extensive experiments on CIEM and CIT, we pinpoint the hallucination issues commonly present in existing VLMs, the disability of the current instruction-tuning dataset to handle the hallucination phenomenon and the superiority of CIT-tuned VLMs over both CIEM and public datasets.