亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider rather general structural equation models (SEMs) between a target and its covariates in several shifted environments. Given $k\in\N$ shifts we consider the set of shifts that are at most $\gamma$-times as strong as a given weighted linear combination of these $k$ shifts and the worst (quadratic) risk over this entire space. This worst risk has a nice decomposition which we refer to as the "worst risk decomposition". Then we find an explicit arg-min solution that minimizes the worst risk and consider its corresponding plug-in estimator which is the main object of this paper. This plug-in estimator is (almost surely) consistent and we first prove a concentration in measure result for it. The solution to the worst risk minimizer is rather reminiscent of the corresponding ordinary least squares solution in that it is product of a vector and an inverse of a Grammian matrix. Due to this, the central moments of the plug-in estimator is not well-defined in general, but we instead consider these moments conditioned on the Grammian inverse being bounded by some given constant. We also study conditional variance of the estimator with respect to a natural filtration for the incoming data. Similarly we consider the conditional covariance matrix with respect to this filtration and prove a bound for the determinant of this matrix. This SEM model generalizes the linear models that have been studied previously for instance in the setting of casual inference or anchor regression but the concentration in measure result and the moment bounds are new even in the linear setting.

相關內容

 結構方程模型(Structural Equation Modeling,SEM)是一種建立、估計和檢驗因果關系模型的方法。模型中既包含有可觀測的顯在變量,也可能包含無法直接觀測的潛在變量。結構方程模型可以替代多重回歸、通徑分析、因子分析、協方差分析等方法,清晰分析單項指標對總體的作用和單項指標間的相互關系。

We present methodology for constructing pointwise confidence intervals for the cumulative distribution function and the quantiles of mixing distributions on the unit interval from binomial mixture distribution samples. No assumptions are made on the shape of the mixing distribution. The confidence intervals are constructed by inverting exact tests of composite null hypotheses regarding the mixing distribution. Our method may be applied to any deconvolution approach that produces test statistics whose distribution is stochastically monotone for stochastic increase of the mixing distribution. We propose a hierarchical Bayes approach, which uses finite Polya Trees for modelling the mixing distribution, that provides stable and accurate deconvolution estimates without the need for additional tuning parameters. Our main technical result establishes the stochastic monotonicity property of the test statistics produced by the hierarchical Bayes approach. Leveraging the need for the stochastic monotonicity property, we explicitly derive the smallest asymptotic confidence intervals that may be constructed using our methodology. Raising the question whether it is possible to construct smaller confidence intervals for the mixing distribution without making parametric assumptions on its shape.

We propose a second order exponential scheme suitable for two-component coupled systems of stiff evolutionary advection--diffusion--reaction equations in two and three space dimensions. It is based on a directional splitting of the involved matrix functions, which allows for a simple yet efficient implementation through the computation of small-sized exponential-like functions and tensor-matrix products. The procedure straightforwardly extends to the case of an arbitrary number of components and to any space dimension. Several numerical examples in 2D and 3D with physically relevant (advective) Schnakenberg, FitzHugh--Nagumo, DIB, and advective Brusselator models clearly show the advantage of the approach against state-of-the-art techniques.

For the numerical solution of the cubic nonlinear Schr\"{o}dinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in $H^s(\mathbb T^2)$, where $s>0$, convergence of order $\mathcal O(\tau^{s/2}+N^{-s})$ is proved in $L^2$. Here $\tau$ denotes the time step size and $N$ the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces, the final convergence result, however, is given in $L^2$. The stated convergence behavior is illustrated by several numerical examples.

We consider a general family of nonlocal in space and time diffusion equations with space-time dependent diffusivity and prove convergence of finite difference schemes in the context of viscosity solutions under very mild conditions. The proofs, based on regularity properties and compactness arguments on the numerical solution, allow to inherit a number of interesting results for the limit equation. More precisely, assuming H\"older regularity only on the initial condition, we prove convergence of the scheme, space-time H\"older regularity of the solution depending on the fractional orders of the operators, as well as specific blow up rates of the first time derivative. Finally, using the obtained regularity results, we are able to prove orders of convergence of the scheme in some cases. These results are consistent with previous studies. The schemes' performance is further numerically verified using both constructed exact solutions and realistic examples. Our experiments show that multithreaded implementation yields an efficient method to solve nonlocal equations numerically.

Refinement calculus provides a structured framework for the progressive and modular development of programs, ensuring their correctness throughout the refinement process. This paper introduces a refinement calculus tailored for quantum programs. To this end, we first study the partial correctness of nondeterministic programs within a quantum while language featuring prescription statements. Orthogonal projectors, which are equivalent to subspaces of the state Hilbert space, are taken as assertions for quantum states. In addition to the denotational semantics where a nondeterministic program is associated with a set of trace-nonincreasing super-operators, we also present their semantics in transforming a postcondition to the weakest liberal postconditions and, conversely, transforming a precondition to the strongest postconditions. Subsequently, refinement rules are introduced based on these dual semantics, offering a systematic approach to the incremental development of quantum programs applicable in various contexts. To illustrate the practical application of the refinement calculus, we examine examples such as the implementation of a $Z$-rotation gate, the repetition code, and the quantum-to-quantum Bernoulli factory. Furthermore, we present Quire, a Python-based interactive prototype tool that provides practical support to programmers engaged in the stepwise development of correct quantum programs.

Numerical methods for computing the solutions of Markov backward stochastic differential equations (BSDEs) driven by continuous-time Markov chains (CTMCs) are explored. The main contributions of this paper are as follows: (1) we observe that Euler-Maruyama temporal discretization methods for solving Markov BSDEs driven by CTMCs are equivalent to exponential integrators for solving the associated systems of ordinary differential equations (ODEs); (2) we introduce multi-stage Euler-Maruyama methods for effectively solving "stiff" Markov BSDEs driven by CTMCs; these BSDEs typically arise from the spatial discretization of Markov BSDEs driven by Brownian motion; (3) we propose a multilevel spatial discretization method on sparse grids that efficiently approximates high-dimensional Markov BSDEs driven by Brownian motion with a combination of multiple Markov BSDEs driven by CTMCs on grids with different resolutions. We also illustrate the effectiveness of the presented methods with a number of numerical experiments in which we treat nonlinear BSDEs arising from option pricing problems in finance.

Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant random component or with particles living in a random environment which characterization may be deduced through experimental data and leading consequently to uncertainty-dependent equilibrium states. In this work, to address the problem of effectively solving stochastic Fokker-Planck systems, we will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods. The resulting numerical method, contrarily to the direct application of a stochastic Galerkin projection in the parameter space of the unknowns of the underlying Fokker-Planck model, leads to highly accurate description of the uncertainty dependent large time behavior. Several numerical tests in the context of collective behavior for social and life sciences are presented to assess the validity of the present methodology against standard ones.

Designing efficient and high-accuracy numerical methods for complex dynamic incompressible magnetohydrodynamics (MHD) equations remains a challenging problem in various analysis and design tasks. This is mainly due to the nonlinear coupling of the magnetic and velocity fields occurring with convection and Lorentz forces, and multiple physical constraints, which will lead to the limitations of numerical computation. In this paper, we develop the MHDnet as a physics-preserving learning approach to solve MHD problems, where three different mathematical formulations are considered and named $B$ formulation, $A_1$ formulation, and $A_2$ formulation. Then the formulations are embedded into the MHDnet that can preserve the underlying physical properties and divergence-free condition. Moreover, MHDnet is designed by the multi-modes feature merging with multiscale neural network architecture, which can accelerate the convergence of the neural networks (NN) by alleviating the interaction of magnetic fluid coupling across different frequency modes. Furthermore, the pressure fields of three formulations, as the hidden state, can be obtained without extra data and computational cost. Several numerical experiments are presented to demonstrate the performance of the proposed MHDnet compared with different NN architectures and numerical formulations.

The weak Galerkin (WG) finite element method has shown great potential in solving various type of partial differential equations. In this paper, we propose an arbitrary order locking-free WG method for solving linear elasticity problems, with the aid of an appropriate $H(div)$-conforming displacement reconstruction operator. Optimal order locking-free error estimates in both the $H^1$-norm and the $L^2$-norm are proved, i.e., the error is independent of the $Lam\acute{e}$ constant $\lambda$. Moreover, the term $\lambda\|\nabla\cdot \mathbf{u}\|_k$ does not need to be bounded in order to achieve these estimates. We validate the accuracy and the robustness of the proposed locking-free WG algorithm by numerical experiments.

We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent $s\to 0^+$). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable \emph{log}-weighted spaces. Numerical evidence suggests that this type of rate cannot be improved. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at $s=0$. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.

北京阿比特科技有限公司