亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Click-Through Rate (CTR) estimation has become one of the most fundamental tasks in many real-world applications and various deep models have been proposed. Some research has proved that FiBiNet is one of the best performance models and outperforms all other models on Avazu dataset. However, the large model size of FiBiNet hinders its wider application. In this paper, we propose a novel FiBiNet++ model to redesign FiBiNet's model structure, which greatly reduces model size while further improves its performance. One of the primary techniques involves our proposed "Low Rank Layer" focused on feature interaction, which serves as a crucial driver of achieving a superior compression ratio for models. Extensive experiments on three public datasets show that FiBiNet++ effectively reduces non-embedding model parameters of FiBiNet by 12x to 16x on three datasets. On the other hand, FiBiNet++ leads to significant performance improvements compared to state-of-the-art CTR methods, including FiBiNet.

相關內容

Multimodal Entity Linking (MEL) is a task that aims to link ambiguous mentions within multimodal contexts to referential entities in a multimodal knowledge base. Recent methods for MEL adopt a common framework: they first interact and fuse the text and image to obtain representations of the mention and entity respectively, and then compute the similarity between them to predict the correct entity. However, these methods still suffer from two limitations: first, as they fuse the features of text and image before matching, they cannot fully exploit the fine-grained alignment relations between the mention and entity. Second, their alignment is static, leading to low performance when dealing with complex and diverse data. To address these issues, we propose a novel framework called Dynamic Relation Interactive Network (DRIN) for MEL tasks. DRIN explicitly models four different types of alignment between a mention and entity and builds a dynamic Graph Convolutional Network (GCN) to dynamically select the corresponding alignment relations for different input samples. Experiments on two datasets show that DRIN outperforms state-of-the-art methods by a large margin, demonstrating the effectiveness of our approach.

Multi-sensor modal fusion has demonstrated strong advantages in 3D object detection tasks. However, existing methods that fuse multi-modal features require transforming features into the bird's eye view space and may lose certain information on Z-axis, thus leading to inferior performance. To this end, we propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer, that incorporates deformable attention and residual structures within the fusion encoding module. Specifically, by developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously, thus exploiting flexible adaptability and avoiding explicit transformation to the bird's eye view space during the feature concatenation process. We further implement a residual structure in our feature encoder to ensure the model's robustness in case of missing an input modality. Through extensive experiments on a popular autonomous driving benchmark dataset, nuScenes, our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.

Visual localization is a critical task in mobile robotics, and researchers are continuously developing new approaches to enhance its efficiency. In this article, we propose a novel approach to improve the accuracy of visual localization using Structure from Motion (SfM) techniques. We highlight the limitations of global SfM, which suffers from high latency, and the challenges of local SfM, which requires large image databases for accurate reconstruction. To address these issues, we propose utilizing Neural Radiance Fields (NeRF), as opposed to image databases, to cut down on the space required for storage. We suggest that sampling reference images around the prior query position can lead to further improvements. We evaluate the accuracy of our proposed method against ground truth obtained using LIDAR and Advanced Lidar Odometry and Mapping in Real-time (A-LOAM), and compare its storage usage against local SfM with COLMAP in the conducted experiments. Our proposed method achieves an accuracy of 0.068 meters compared to the ground truth, which is slightly lower than the most advanced method COLMAP, which has an accuracy of 0.022 meters. However, the size of the database required for COLMAP is 400 megabytes, whereas the size of our NeRF model is only 160 megabytes. Finally, we perform an ablation study to assess the impact of using reference images from the NeRF reconstruction.

Star-join query is the fundamental task in data warehouse and has wide applications in On-line Analytical Processing (OLAP) scenarios. Due to the large number of foreign key constraints and the asymmetric effect in the neighboring instance between the fact and dimension tables, even those latest DP efforts specifically designed for join, if directly applied to star-join query, will suffer from extremely large estimation errors and expensive computational cost. In this paper, we are thus motivated to propose DP-starJ, a novel Differentially Private framework for star-Join queries. DP-starJ consists of a series of strategies tailored to specific features of star-join, including 1) we unveil the different effect of fact and dimension tables on the neighboring database instances, and accordingly revisit the definitions tailored to different cases of star-join; 2) we propose Predicate Mechanism (PM), which utilizes predicate perturbation to inject noise into the join procedure instead of the results; 3) to further boost the robust performance, we propose a DP-compliant star-join algorithm for various types of star-join tasks based on PM. We provide both theoretical analysis and empirical study, which demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of accuracy, efficiency, and scalability.

Self-Supervised Learning (SSL) models have demonstrated exceptional performance in various speech tasks, particularly in low-resource and multilingual domains. Recent works show that fusing SSL models could achieve superior performance compared to using one SSL model. However, fusion models have increased model parameter size, leading to longer inference times. In this paper, we propose a novel approach of predicting other SSL models' features from a single SSL model, resulting in a light-weight framework with competitive performance. Our experiments show that SSL feature prediction models outperform individual SSL models in multilingual speech recognition tasks. The leading prediction model achieves an average SUPERB score increase of 135.4 in ML-SUPERB benchmarks. Moreover, our proposed framework offers an efficient solution, as it reduces the resulting model parameter size and inference times compared to previous fusion models.

Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.

The growth of Graph Convolution Network (GCN) model sizes has revolutionized numerous applications, surpassing human performance in areas such as personal healthcare and financial systems. The deployment of GCNs in the cloud raises privacy concerns due to potential adversarial attacks on client data. To address security concerns, Privacy-Preserving Machine Learning (PPML) using Homomorphic Encryption (HE) secures sensitive client data. However, it introduces substantial computational overhead in practical applications. To tackle those challenges, we present LinGCN, a framework designed to reduce multiplication depth and optimize the performance of HE based GCN inference. LinGCN is structured around three key elements: (1) A differentiable structural linearization algorithm, complemented by a parameterized discrete indicator function, co-trained with model weights to meet the optimization goal. This strategy promotes fine-grained node-level non-linear location selection, resulting in a model with minimized multiplication depth. (2) A compact node-wise polynomial replacement policy with a second-order trainable activation function, steered towards superior convergence by a two-level distillation approach from an all-ReLU based teacher model. (3) an enhanced HE solution that enables finer-grained operator fusion for node-wise activation functions, further reducing multiplication level consumption in HE-based inference. Our experiments on the NTU-XVIEW skeleton joint dataset reveal that LinGCN excels in latency, accuracy, and scalability for homomorphically encrypted inference, outperforming solutions such as CryptoGCN. Remarkably, LinGCN achieves a 14.2x latency speedup relative to CryptoGCN, while preserving an inference accuracy of 75% and notably reducing multiplication depth.

The theoretical landscape of federated learning (FL) undergoes rapid evolution, but its practical application encounters a series of intricate challenges, and hyperparameter optimization is one of these critical challenges. Amongst the diverse adjustments in hyperparameters, the adaptation of the learning rate emerges as a crucial component, holding the promise of significantly enhancing the efficacy of FL systems. In response to this critical need, this paper presents FedHyper, a novel hypergradient-based learning rate adaptation algorithm specifically designed for FL. FedHyper serves as a universal learning rate scheduler that can adapt both global and local rates as the training progresses. In addition, FedHyper not only showcases unparalleled robustness to a spectrum of initial learning rate configurations but also significantly alleviates the necessity for laborious empirical learning rate adjustments. We provide a comprehensive theoretical analysis of FedHyper's convergence rate and conduct extensive experiments on vision and language benchmark datasets. The results demonstrate that FEDHYPER consistently converges 1.1-3x faster than FedAvg and the competing baselines while achieving superior final accuracy. Moreover, FedHyper catalyzes a remarkable surge in accuracy, augmenting it by up to 15% compared to FedAvg under suboptimal initial learning rate settings.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司