亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computer-generated holography (CGH) can be used to display three-dimensional (3D) images and has a special feature that no other technology possesses: it can reconstruct arbitrary object wavefronts. In this study, we investigated a high-speed full-color reconstruction method for improving the realism of 3D images produced using CGH. The proposed method uses a digital micromirror device (DMD) with a high-speed switching capability as the hologram display device. It produces 3D video by time-division multiplexing using an optical system incorporating fiber-coupled laser diodes (LDs) operating in red, green, and blue wavelengths. The wavelength dispersion of the DMD is compensated for by superimposing plane waves on the hologram. Fourier transform optics are used to separate the object, conjugate, and zeroth-order light, thus eliminating the need for an extensive 4f system. The resources used in this research, such as the programs used for the hologram generation and the schematics of the LD driver, are available on GitHub.

相關內容

3D是(shi)(shi)英文(wen)“Three Dimensions”的簡(jian)稱(cheng),中文(wen)是(shi)(shi)指三維、三個維度(du)、三個坐標(biao),即有(you)長、有(you)寬(kuan)、有(you)高,換(huan)句話說,就是(shi)(shi)立體的,是(shi)(shi)相對于只有(you)長和寬(kuan)的平面(2D)而言。

Graph auto-encoders are widely used to construct graph representations in Euclidean vector spaces. However, it has already been pointed out empirically that linear models on many tasks can outperform graph auto-encoders. In our work, we prove that the solution space induced by graph auto-encoders is a subset of the solution space of a linear map. This demonstrates that linear embedding models have at least the representational power of graph auto-encoders based on graph convolutional networks. So why are we still using nonlinear graph auto-encoders? One reason could be that actively restricting the linear solution space might introduce an inductive bias that helps improve learning and generalization. While many researchers believe that the nonlinearity of the encoder is the critical ingredient towards this end, we instead identify the node features of the graph as a more powerful inductive bias. We give theoretical insights by introducing a corresponding bias in a linear model and analyzing the change in the solution space. Our experiments are aligned with other empirical work on this question and show that the linear encoder can outperform the nonlinear encoder when using feature information.

Providing a promising pathway to link the human brain with external devices, Brain-Computer Interfaces (BCIs) have seen notable advancements in decoding capabilities, primarily driven by increasingly sophisticated techniques, especially deep learning. However, achieving high accuracy in real-world scenarios remains a challenge due to the distribution shift between sessions and subjects. In this paper we will explore the concept of online test-time adaptation (OTTA) to continuously adapt the model in an unsupervised fashion during inference time. Our approach guarantees the preservation of privacy by eliminating the requirement to access the source data during the adaptation process. Additionally, OTTA achieves calibration-free operation by not requiring any session- or subject-specific data. We will investigate the task of electroencephalography (EEG) motor imagery decoding using a lightweight architecture together with different OTTA techniques like alignment, adaptive batch normalization, and entropy minimization. We examine two datasets and three distinct data settings for a comprehensive analysis. Our adaptation methods produce state-of-the-art results, potentially instigating a shift in transfer learning for BCI decoding towards online adaptation.

High-dimensional variable selection, with many more covariates than observations, is widely documented in standard regression models, but there are still few tools to address it in non-linear mixed-effects models where data are collected repeatedly on several individuals. In this work, variable selection is approached from a Bayesian perspective and a selection procedure is proposed, combining the use of a spike-and-slab prior and the Stochastic Approximation version of the Expectation Maximisation (SAEM) algorithm. Similarly to Lasso regression, the set of relevant covariates is selected by exploring a grid of values for the penalisation parameter. The SAEM approach is much faster than a classical MCMC (Markov chain Monte Carlo) algorithm and our method shows very good selection performances on simulated data. Its flexibility is demonstrated by implementing it for a variety of nonlinear mixed effects models. The usefulness of the proposed method is illustrated on a problem of genetic markers identification, relevant for genomic-assisted selection in plant breeding.

The Gearhart-Koshy acceleration for the Kaczmarz method for linear systems is a line-search with the unusual property that it does not minimize the residual, but the error. Recently one of the authors generalized the this acceleration from a line-search to a search in affine subspaces. In this paper, we demonstrate that the affine search is a Krylov space method that is neither a CG-type nor a MINRES-type method, and we prove that it is mathematically equivalent with a more canonical Gram-Schmidt-based method. We also investigate what abstract property of the Kaczmarz method enables this type of algorithm, and we conclude with a simple numerical example.

Studies of the human brain during natural activities, such as locomotion, would benefit from the ability to image deep brain structures during these activities. While Positron Emission Tomography (PET) can image these structures, the bulk and weight of current scanners are not compatible with the desire for a wearable device. This has motivated the design of a robotic system to support a PET imaging system around the subject's head and to move the system to accommodate natural motion. We report here the design and experimental evaluation of a prototype robotic system that senses motion of a subject's head, using parallel string encoders connected between the robot-supported imaging ring and a helmet worn by the subject. This measurement is used to robotically move the imaging ring (coarse motion correction) and to compensate for residual motion during image reconstruction (fine motion correction). Minimization of latency and measurement error are the key design goals, respectively, for coarse and fine motion correction. The system is evaluated using recorded human head motions during locomotion, with a mock imaging system consisting of lasers and cameras, and is shown to provide an overall system latency of about 80 ms, which is sufficient for coarse motion correction and collision avoidance, as well as a measurement accuracy of about 0.5 mm for fine motion correction.

We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to our knowledge, the first known family of codes that can be decoded in nearly linear time, even as they approach the list decoding capacity. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list-decoding. It is known that for every $\epsilon >0$, and rate $R \in (0,1)$, there exist explicit families of these codes that have rate $R$ and can be list-decoded from a $(1-R-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory, 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above tasks in nearly linear time. Our algorithms have two main components. The first builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a nearly linear time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design nearly-linear time algorithms for two natural algebraic problems. The first algorithm solves linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ where $Q$ has the form $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i = 0}^m Q_i(x)\cdot y_i$. The second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$ where $\gamma$ is a high-order field element. These algorithms can be viewed as generalizations of classical algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.

Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization of the latent MAP. In this work, we propose to use compressive autoencoders for latent estimation. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. We then introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs this estimation within the framework of variational inference. This allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.

Embedding graphs in continous spaces is a key factor in designing and developing algorithms for automatic information extraction to be applied in diverse tasks (e.g., learning, inferring, predicting). The reliability of graph embeddings directly depends on how much the geometry of the continuous space matches the graph structure. Manifolds are mathematical structure that can enable to incorporate in their topological spaces the graph characteristics, and in particular nodes distances. State-of-the-art of manifold-based graph embedding algorithms take advantage of the assumption that the projection on a tangential space of each point in the manifold (corresponding to a node in the graph) would locally resemble a Euclidean space. Although this condition helps in achieving efficient analytical solutions to the embedding problem, it does not represent an adequate set-up to work with modern real life graphs, that are characterized by weighted connections across nodes often computed over sparse datasets with missing records. In this work, we introduce a new class of manifold, named soft manifold, that can solve this situation. In particular, soft manifolds are mathematical structures with spherical symmetry where the tangent spaces to each point are hypocycloids whose shape is defined according to the velocity of information propagation across the data points. Using soft manifolds for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets. Experimental results on reconstruction tasks on synthetic and real datasets show how the proposed approach enable more accurate and reliable characterization of graphs in continuous spaces with respect to the state-of-the-art.

Image steganography is a technique of hiding secret information inside another image, so that the secret is not visible to human eyes and can be recovered when needed. Most of the existing image steganography methods have low hiding robustness when the container images affected by distortion. Such as Gaussian noise and lossy compression. This paper proposed PRIS to improve the robustness of image steganography, it based on invertible neural networks, and put two enhance modules before and after the extraction process with a 3-step training strategy. Moreover, rounding error is considered which is always ignored by existing methods, but actually it is unavoidable in practical. A gradient approximation function (GAF) is also proposed to overcome the undifferentiable issue of rounding distortion. Experimental results show that our PRIS outperforms the state-of-the-art robust image steganography method in both robustness and practicability. Codes are available at //github.com/yanghangAI/PRIS, demonstration of our model in practical at //yanghang.site/hide/.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

北京阿比特科技有限公司