Few-shot learning with large-scale, pre-trained language models is a powerful way to answer questions about code, e.g., how to complete a given code example, or even generate code snippets from scratch. The success of these models raises the question whether they could serve as a basis for building a wide range code generation tools. Traditionally, such tools are built manually and separately for each task. Instead, few-shot learning may allow to obtain different tools from a single pre-trained language model by simply providing a few examples or a natural language description of the expected tool behavior. This paper studies to what extent a state-of-the-art, pre-trained language model of code, Codex, may serve this purpose. We consider three code manipulation and code generation tasks targeted by a range of traditional tools: (i) code mutation; (ii) test oracle generation from natural language documentation; and (iii) test case generation. For each task, we compare few-shot learning to a manually built tool. Our results show that the model-based tools complement (code mutation), are on par (test oracle generation), or even outperform their respective traditionally built tool (test case generation), while imposing far less effort to develop them. By comparing the effectiveness of different variants of the model-based tools, we provide insights on how to design an appropriate input ("prompt") to the model and what influence the size of the model has. For example, we find that providing a small natural language description of the code generation task is an easy way to improve predictions. Overall, we conclude that few-shot language models are surprisingly effective, yet there is still more work to be done, such as exploring more diverse ways of prompting and tackling even more involved tasks.
Generating sound effects that humans want is an important topic. However, there are few studies in this area for sound generation. In this study, we investigate generating sound conditioned on a text prompt and propose a novel text-to-sound generation framework that consists of a text encoder, a Vector Quantized Variational Autoencoder (VQ-VAE), a decoder, and a vocoder. The framework first uses the decoder to transfer the text features extracted from the text encoder to a mel-spectrogram with the help of VQ-VAE, and then the vocoder is used to transform the generated mel-spectrogram into a waveform. We found that the decoder significantly influences the generation performance. Thus, we focus on designing a good decoder in this study. We begin with the traditional autoregressive decoder, which has been proved as a state-of-the-art method in previous sound generation works. However, the AR decoder always predicts the mel-spectrogram tokens one by one in order, which introduces the unidirectional bias and accumulation of errors problems. Moreover, with the AR decoder, the sound generation time increases linearly with the sound duration. To overcome the shortcomings introduced by AR decoders, we propose a non-autoregressive decoder based on the discrete diffusion model, named Diffsound. Specifically, the Diffsound predicts all of the mel-spectrogram tokens in one step and then refines the predicted tokens in the next step, so the best-predicted results can be obtained after several steps. Our experiments show that our proposed Diffsound not only produces better text-to-sound generation results when compared with the AR decoder but also has a faster generation speed, e.g., MOS: 3.56 \textit{v.s} 2.786, and the generation speed is five times faster than the AR decoder.
Trajectory prediction is an essential task for successful human robot interaction, such as in autonomous driving. In this work, we address the problem of predicting future pedestrian trajectories in a first person view setting with a moving camera. To that end, we propose a novel action-based contrastive learning loss, that utilizes pedestrian action information to improve the learned trajectory embeddings. The fundamental idea behind this new loss is that trajectories of pedestrians performing the same action should be closer to each other in the feature space than the trajectories of pedestrians with significantly different actions. In other words, we argue that behavioral information about pedestrian action influences their future trajectory. Furthermore, we introduce a novel sampling strategy for trajectories that is able to effectively increase negative and positive contrastive samples. Additional synthetic trajectory samples are generated using a trained Conditional Variational Autoencoder (CVAE), which is at the core of several models developed for trajectory prediction. Results show that our proposed contrastive framework employs contextual information about pedestrian behavior, i.e. action, effectively, and it learns a better trajectory representation. Thus, integrating the proposed contrastive framework within a trajectory prediction model improves its results and outperforms state-of-the-art methods on three trajectory prediction benchmarks [31, 32, 26].
We propose a novel framework, On-Demand MOtion Generation (ODMO), for generating realistic and diverse long-term 3D human motion sequences conditioned only on action types with an additional capability of customization. ODMO shows improvements over SOTA approaches on all traditional motion evaluation metrics when evaluated on three public datasets (HumanAct12, UESTC, and MoCap). Furthermore, we provide both qualitative evaluations and quantitative metrics demonstrating several first-known customization capabilities afforded by our framework, including mode discovery, interpolation, and trajectory customization. These capabilities significantly widen the spectrum of potential applications of such motion generation models. The novel on-demand generative capabilities are enabled by innovations in both the encoder and decoder architectures: (i) Encoder: Utilizing contrastive learning in low-dimensional latent space to create a hierarchical embedding of motion sequences, where not only the codes of different action types form different groups, but within an action type, codes of similar inherent patterns (motion styles) cluster together, making them readily discoverable; (ii) Decoder: Using a hierarchical decoding strategy where the motion trajectory is reconstructed first and then used to reconstruct the whole motion sequence. Such an architecture enables effective trajectory control. Our code is released on the Github page: //github.com/roychowdhuryresearch/ODMO
Transformers, currently the state-of-the-art in natural language understanding (NLU) tasks, are prone to generate uncalibrated predictions or extreme probabilities, making the process of taking different decisions based on their output relatively difficult. In this paper we propose to build several inductive Venn--ABERS predictors (IVAP), which are guaranteed to be well calibrated under minimal assumptions, based on a selection of pre-trained transformers. We test their performance over a set of diverse NLU tasks and show that they are capable of producing well-calibrated probabilistic predictions that are uniformly spread over the [0,1] interval -- all while retaining the original model's predictive accuracy.
A recent trend in artificial intelligence is the use of pretrained models for language and vision tasks, which have achieved extraordinary performance but also puzzling failures. Probing these models' abilities in diverse ways is therefore critical to the field. In this paper, we explore the reliability of models, where we define a reliable model as one that not only achieves strong predictive performance but also performs well consistently over many decision-making tasks involving uncertainty (e.g., selective prediction, open set recognition), robust generalization (e.g., accuracy and proper scoring rules such as log-likelihood on in- and out-of-distribution datasets), and adaptation (e.g., active learning, few-shot uncertainty). We devise 10 types of tasks over 40 datasets in order to evaluate different aspects of reliability on both vision and language domains. To improve reliability, we developed ViT-Plex and T5-Plex, pretrained large model extensions for vision and language modalities, respectively. Plex greatly improves the state-of-the-art across reliability tasks, and simplifies the traditional protocol as it improves the out-of-the-box performance and does not require designing scores or tuning the model for each task. We demonstrate scaling effects over model sizes up to 1B parameters and pretraining dataset sizes up to 4B examples. We also demonstrate Plex's capabilities on challenging tasks including zero-shot open set recognition, active learning, and uncertainty in conversational language understanding.
Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Language model based pre-trained models such as BERT have provided significant gains across different NLP tasks. In this paper, we study different types of pre-trained transformer based models such as auto-regressive models (GPT-2), auto-encoder models (BERT), and seq2seq models (BART) for conditional data augmentation. We show that prepending the class labels to text sequences provides a simple yet effective way to condition the pre-trained models for data augmentation. On three classification benchmarks, pre-trained Seq2Seq model outperforms other models. Further, we explore how different pre-trained model based data augmentation differs in-terms of data diversity, and how well such methods preserve the class-label information.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.