Preference-based reinforcement learning (PbRL) promises to learn a complex reward function with binary human preference. However, such human-in-the-loop formulation requires considerable human effort to assign preference labels to segment pairs, hindering its large-scale applications. Recent approache has tried to reuse unlabeled segments, which implicitly elucidates the distribution of segments and thereby alleviates the human effort. And consistency regularization is further considered to improve the performance of semi-supervised learning. However, we notice that, unlike general classification tasks, in PbRL there exits a unique phenomenon that we defined as similarity trap in this paper. Intuitively, human can have diametrically opposite preferredness for similar segment pairs, but such similarity may trap consistency regularization fail in PbRL. Due to the existence of similarity trap, such consistency regularization improperly enhances the consistency possiblity of the model's predictions between segment pairs, and thus reduces the confidence in reward learning, since the augmented distribution does not match with the original one in PbRL. To overcome such issue, we present a self-training method along with our proposed peer regularization, which penalizes the reward model memorizing uninformative labels and acquires confident predictions. Empirically, we demonstrate that our approach is capable of learning well a variety of locomotion and robotic manipulation behaviors using different semi-supervised alternatives and peer regularization.
Learning paradigms for large language models (LLMs) currently tend to fall within either in-context learning (ICL) or full fine-tuning. Each of these comes with their own trade-offs based on available data, model size, compute cost, ease-of-use, and final quality with neither solution performing well across-the-board. In this article, we first describe ICL and fine-tuning paradigms in a way that highlights their natural connections. Based on these connections, we propose a new learning paradigm called FIAT that fuses the best of these paradigms together, enabling prompt-engineered instructions and chain-of-thought reasoning with the very largest models while also using similar methods to perform parameter updates on a modestly-sized LLM with parameter-efficient tuning. We evaluate FIAT's effectiveness on a variety of multilingual tasks and observe that FIAT performs better than both ICL and fine-tuning at scales ranging from 100-10,000 training examples. We hope that FIAT provides a practical way of harnessing the full potential of LLMs without needing to make a hard choice between learning paradigms.
One primary topic of multi-modal learning is to jointly incorporate heterogeneous information from different modalities. However, most models often suffer from unsatisfactory multi-modal cooperation, which could not jointly utilize all modalities well. Some methods are proposed to identify and enhance the worse learnt modality, but are often hard to provide the fine-grained observation of multi-modal cooperation at sample-level with theoretical support. Hence, it is essential to reasonably observe and improve the fine-grained cooperation between modalities, especially when facing realistic scenarios where the modality discrepancy could vary across different samples. To this end, we introduce a fine-grained modality valuation metric to evaluate the contribution of each modality at sample-level. Via modality valuation, we regretfully observe that the multi-modal model tends to rely on one specific modality, resulting in other modalities being low-contributing. We further analyze this issue and improve cooperation between modalities by enhancing the discriminative ability of low-contributing modalities in a targeted manner. Overall, our methods reasonably observe the fine-grained uni-modal contribution at sample-level and achieve considerable improvement on different multi-modal models.
Large machine learning models trained on diverse data have recently seen unprecedented success. Federated learning enables training on private data that may otherwise be inaccessible, such as domain-specific datasets decentralized across many clients. However, federated learning can be difficult to scale to large models when clients have limited resources. This challenge often results in a trade-off between model size and access to diverse data. To mitigate this issue and facilitate training of large models on edge devices, we introduce a simple yet effective strategy, Federated Layer-wise Learning, to simultaneously reduce per-client memory, computation, and communication costs. Clients train just a single layer each round, reducing resource costs considerably with minimal performance degradation. We also introduce Federated Depth Dropout, a complementary technique that randomly drops frozen layers during training, to further reduce resource usage. Coupling these two techniques enables us to effectively train significantly larger models on edge devices. Specifically, we reduce training memory usage by 5x or more in federated self-supervised representation learning and demonstrate that performance in downstream tasks is comparable to conventional federated self-supervised learning.
Wav2vec2 has achieved success in applying Transformer architecture and self-supervised learning to speech recognition. Recently, these have come to be used not only for speech recognition but also for the entire speech processing. This paper introduces an effective end-to-end speaker identification model applied Transformer-based contextual model. We explored the relationship between the hyper-parameters and the performance in order to discern the structure of an effective model. Furthermore, we propose a pooling method, Temporal Gate Pooling, with powerful learning ability for speaker identification. We applied Conformer as encoder and BEST-RQ for pre-training and conducted an evaluation utilizing the speaker identification of VoxCeleb1. The proposed method has achieved an accuracy of 87.1% with 28.5M parameters, demonstrating comparable precision to wav2vec2 with 317.7M parameters. Code is available at //github.com/HarunoriKawano/speaker-identification-with-tgp.
Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at //github.com/marswhu/HFL_Survey.
Federated learning (FL) facilitates distributed training across clients, safeguarding the privacy of their data. The inherent distributed structure of FL introduces vulnerabilities, especially from adversarial (Byzantine) clients aiming to skew local updates to their advantage. Despite the plethora of research focusing on Byzantine-resilient FL, the academic community has yet to establish a comprehensive benchmark suite, pivotal for impartial assessment and comparison of different techniques. This paper investigates existing techniques in Byzantine-resilient FL and introduces an open-source benchmark suite for convenient and fair performance comparisons. Our investigation begins with a systematic study of Byzantine attack and defense strategies. Subsequently, we present \ours, a scalable, extensible, and easily configurable benchmark suite that supports researchers and developers in efficiently implementing and validating novel strategies against baseline algorithms in Byzantine-resilient FL. The design of \ours incorporates key characteristics derived from our systematic study, encompassing the attacker's capabilities and knowledge, defense strategy categories, and factors influencing robustness. Blades contains built-in implementations of representative attack and defense strategies and offers user-friendly interfaces for seamlessly integrating new ideas.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.