亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We survey recent contributions to finite element exterior calculus over manifolds and surfaces within a comprehensive formalism for the error analysis of vector-valued partial differential equations over manifolds. Our primary focus is on uniformly bounded commuting projections over manifolds: these projections map from Sobolev de Rham complexes onto finite element de Rham complexes, commute with the differential operators, and satisfy uniform bounds in Lebesgue norms. They enable the Galerkin theory of Hilbert complexes for a large range of intrinsic finite element methods over manifolds. However, these intrinsic finite element methods are generally not computable and thus primarily of theoretical interest. This leads to our second point: estimating the geometric variational crime incurred by transitioning to computable approximate problems. Lastly, our third point addresses how to estimate the approximation error of the intrinsic finite element method in terms of the mesh size. If the solution is not continuous, then such an estimate is achieved via modified Cl\'ement or Scott-Zhang interpolants that facilitate a broken Bramble--Hilbert lemma.

相關內容

Neural networks excel at discovering statistical patterns in high-dimensional data sets. In practice, higher-order cumulants, which quantify the non-Gaussian correlations between three or more variables, are particularly important for the performance of neural networks. But how efficient are neural networks at extracting features from higher-order cumulants? We study this question in the spiked cumulant model, where the statistician needs to recover a privileged direction or "spike" from the order-$p\ge 4$ cumulants of~$d$-dimensional inputs. We first characterise the fundamental statistical and computational limits of recovering the spike by analysing the number of samples~$n$ required to strongly distinguish between inputs from the spiked cumulant model and isotropic Gaussian inputs. We find that statistical distinguishability requires $n\gtrsim d$ samples, while distinguishing the two distributions in polynomial time requires $n \gtrsim d^2$ samples for a wide class of algorithms, i.e. those covered by the low-degree conjecture. These results suggest the existence of a wide statistical-to-computational gap in this problem. Numerical experiments show that neural networks learn to distinguish the two distributions with quadratic sample complexity, while "lazy" methods like random features are not better than random guessing in this regime. Our results show that neural networks extract information from higher-order correlations in the spiked cumulant model efficiently, and reveal a large gap in the amount of data required by neural networks and random features to learn from higher-order cumulants.

This paper presents the first application of the direct parametrisation method for invariant manifolds to a fully coupled multiphysics problem involving the nonlinear vibrations of deformable structures subjected to an electrostatic field. The formulation proposed is intended for model order reduction of electrostatically actuated resonating Micro-Electro-Mechanical Systems (MEMS). The continuous problem is first rewritten in a manner that can be directly handled by the parametrisation method, which relies upon automated asymptotic expansions. A new mixed fully Lagrangian formulation is thus proposed which contains only explicit polynomial nonlinearities, which is then discretised in the framework of finite element procedures. Validation is performed on the classical parallel plate configuration, where different formulations using either the general framework, or an approximation of the electrostatic field due to the geometric configuration selected, are compared. Reduced-order models along these formulations are also compared to full-order simulations operated with a time integration approach. Numerical results show a remarkable performance both in terms of accuracy and wealth of nonlinear effects that can be accounted for. In particular, the transition from hardening to softening behaviour of the primary resonance while increasing the constant voltage component of the electric actuation, is recovered. Secondary resonances leading to superharmonic and parametric resonances are also investigated with the reduced-order model.

Dependence is undoubtedly a central concept in statistics. Though, it proves difficult to locate in the literature a formal definition which goes beyond the self-evident 'dependence = non-independence'. This absence has allowed the term 'dependence' and its declination to be used vaguely and indiscriminately for qualifying a variety of disparate notions, leading to numerous incongruities. For example, the classical Pearson's, Spearman's or Kendall's correlations are widely regarded as 'dependence measures' of major interest, in spite of returning 0 in some cases of deterministic relationships between the variables at play, evidently not measuring dependence at all. Arguing that research on such a fundamental topic would benefit from a slightly more rigid framework, this paper suggests a general definition of the dependence between two random variables defined on the same probability space. Natural enough for aligning with intuition, that definition is still sufficiently precise for allowing unequivocal identification of a 'universal' representation of the dependence structure of any bivariate distribution. Links between this representation and familiar concepts are highlighted, and ultimately, the idea of a dependence measure based on that universal representation is explored and shown to satisfy Renyi's postulates.

Many interesting physical problems described by systems of hyperbolic conservation laws are stiff, and thus impose a very small time-step because of the restrictive CFL stability condition. In this case, one can exploit the superior stability properties of implicit time integration which allows to choose the time-step only from accuracy requirements, and thus avoid the use of small time-steps. We discuss an efficient framework to devise high order implicit schemes for stiff hyperbolic systems without tailoring it to a specific problem. The nonlinearity of high order schemes, due to space- and time-limiting procedures which control nonphysical oscillations, makes the implicit time integration difficult, e.g.~because the discrete system is nonlinear also on linear problems. This nonlinearity of the scheme is circumvented as proposed in (Puppo et al., Comm.~Appl.~Math.~\& Comput., 2023) for scalar conservation laws, where a first order implicit predictor is computed to freeze the nonlinear coefficients of the essentially non-oscillatory space reconstruction, and also to assist limiting in time. In addition, we propose a novel conservative flux-centered a-posteriori time-limiting procedure using numerical entropy indicators to detect troubled cells. The numerical tests involve classical and artificially devised stiff problems using the Euler's system of gas-dynamics.

This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.

Deep neural networks (DNNs) often fail silently with over-confident predictions on out-of-distribution (OOD) samples, posing risks in real-world deployments. Existing techniques predominantly emphasize either the feature representation space or the gradient norms computed with respect to DNN parameters, yet they overlook the intricate gradient distribution and the topology of classification regions. To address this gap, we introduce GRadient-aware Out-Of-Distribution detection in interpolated manifolds (GROOD), a novel framework that relies on the discriminative power of gradient space to distinguish between in-distribution (ID) and OOD samples. To build this space, GROOD relies on class prototypes together with a prototype that specifically captures OOD characteristics. Uniquely, our approach incorporates a targeted mix-up operation at an early intermediate layer of the DNN to refine the separation of gradient spaces between ID and OOD samples. We quantify OOD detection efficacy using the distance to the nearest neighbor gradients derived from the training set, yielding a robust OOD score. Experimental evaluations substantiate that the introduction of targeted input mix-upamplifies the separation between ID and OOD in the gradient space, yielding impressive results across diverse datasets. Notably, when benchmarked against ImageNet-1k, GROOD surpasses the established robustness of state-of-the-art baselines. Through this work, we establish the utility of leveraging gradient spaces and class prototypes for enhanced OOD detection for DNN in image classification.

High-order tensor methods for solving both convex and nonconvex optimization problems have generated significant research interest, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of regularization. Developing efficient techniques for solving such subproblems is an ongoing topic of research, and this paper addresses the case of the third-order tensor subproblem. We propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with Quartic Regularisation, by minimizing a sequence of local quadratic models that incorporate simple cubic and quartic terms. The role of the cubic term is to crudely approximate local tensor information, while the quartic one controls model regularization and progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $\mathcal{O}(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases. We propose practical CQR variants that use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

Partitioned neural network functions are used to approximate the solution of partial differential equations. The problem domain is partitioned into non-overlapping subdomains and the partitioned neural network functions are defined on the given non-overlapping subdomains. Each neural network function then approximates the solution in each subdomain. To obtain the convergent neural network solution, certain continuity conditions on the partitioned neural network functions across the subdomain interface need to be included in the loss function, that is used to train the parameters in the neural network functions. In our work, by introducing suitable interface values, the loss function is reformulated into a sum of localized loss functions and each localized loss function is used to train the corresponding local neural network parameters. In addition, to accelerate the neural network solution convergence, the localized loss function is enriched with an augmented Lagrangian term, where the interface condition and the boundary condition are enforced as constraints on the local solutions by using Lagrange multipliers. The local neural network parameters and Lagrange multipliers are then found by optimizing the localized loss function. To take the advantage of the localized loss function for the parallel computation, an iterative algorithm is also proposed. For the proposed algorithms, their training performance and convergence are numerically studied for various test examples.

This study introduces a force-based higher-order shear deformable beam finite element model that incorporates a rational shear stress distribution, designed for the precise analysis of functionally graded sandwich beams. Unlike conventional higher-order shear beam finite elements that regard generalized displacements as unknown fields, this model considers the distributions of stress resultants along the beam axis as the unknown fields. The specific forms of these stress resultants and the generalized displacements are analytically determined, based on the differential equilibrium equations of the higher-order shear beam. This approach effectively circumvents numerical errors that can arise from finite element discretization. Furthermore, the model introduces a stress equilibrium equation to accurately depict the distribution of transverse shear stress across the beam thickness. A corrected shear stiffness, which takes into account rational shear stress, is derived and incorporated into the proposed beam element. Numerical examples underscore the accuracy and efficacy of the proposed higher-order beam element model in the static analysis of functionally graded sandwich beams, particularly in terms of true transverse shear stress distribution.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司