亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the contemporary data landscape characterized by multi-source data collection and third-party sharing, ensuring individual privacy stands as a critical concern. While various anonymization methods exist, their utility preservation and privacy guarantees remain challenging to quantify. In this work, we address this gap by studying the utility and privacy of the spectral anonymization (SA) algorithm, particularly in an asymptotic framework. Unlike conventional anonymization methods that directly modify the original data, SA operates by perturbing the data in a spectral basis and subsequently reverting them to their original basis. Alongside the original version $\mathcal{P}$-SA, employing random permutation transformation, we introduce two novel SA variants: $\mathcal{J}$-spectral anonymization and $\mathcal{O}$-spectral anonymization, which employ sign-change and orthogonal matrix transformations, respectively. We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data. Our results reveal, in particular, that the asymptotic efficiency of all three SA algorithms in covariance estimation is exactly 50% when compared to the original data. To assess the applicability of these asymptotic results in practice, we conduct a simulation study with finite data and also evaluate the privacy protection offered by these algorithms using distance-based record linkage. Our research reveals that while no method exhibits clear superiority in finite-sample utility, $\mathcal{O}$-SA distinguishes itself for its exceptional privacy preservation, never producing identical records, albeit with increased computational complexity. Conversely, $\mathcal{P}$-SA emerges as a computationally efficient alternative, demonstrating unmatched efficiency in mean estimation.

相關內容

Happ and Greven (2018) developed a methodology for principal components analysis of multivariate functional data for data observed on different dimensional domains. Their approach relies on an estimation of univariate functional principal components for each univariate functional feature. In this paper, we present extensive simulations to investigate choosing the number of principal components to retain. We show empirically that the conventional approach of using a percentage of variance explained threshold for each univariate functional feature may be unreliable when aiming to explain an overall percentage of variance in the multivariate functional data, and thus we advise practitioners to be careful when using it.

The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks for assessing the performance of quantum computing hardware and software. Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power, but bad benchmarks can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, i.e., "quantum utility". We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, we survey existing benchmarks, critically discuss recent trends in benchmarking, and highlight important open research questions in this field.

The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess important conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that this family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.

We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.

A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.

A new decoder for the SIF test problems of the CUTEst collection is described, which produces problem files allowing the computation of values and derivatives of the objective function and constraints of most \cutest\ problems directly within ``native'' Matlab, Python or Julia, without any additional installation or interfacing with MEX files or Fortran programs. When used with Matlab, the new problem files optionally support reduced-precision computations.

We present a Bayesian method for multivariate changepoint detection that allows for simultaneous inference on the location of a changepoint and the coefficients of a logistic regression model for distinguishing pre-changepoint data from post-changepoint data. In contrast to many methods for multivariate changepoint detection, the proposed method is applicable to data of mixed type and avoids strict assumptions regarding the distribution of the data and the nature of the change. The regression coefficients provide an interpretable description of a potentially complex change. For posterior inference, the model admits a simple Gibbs sampling algorithm based on P\'olya-gamma data augmentation. We establish conditions under which the proposed method is guaranteed to recover the true underlying changepoint. As a testing ground for our method, we consider the problem of detecting topological changes in time series of images. We demonstrate that our proposed method $\mathtt{bclr}$, combined with a topological feature embedding, performs well on both simulated and real image data. The method also successfully recovers the location and nature of changes in more traditional changepoint tasks.

We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code: //github.com/jmorlana/ColonMapper.

Artificial Intelligence (AI) is revolutionizing biodiversity research by enabling advanced data analysis, species identification, and habitats monitoring, thereby enhancing conservation efforts. Ensuring reproducibility in AI-driven biodiversity research is crucial for fostering transparency, verifying results, and promoting the credibility of ecological findings.This study investigates the reproducibility of deep learning (DL) methods within the biodiversity domain. We design a methodology for evaluating the reproducibility of biodiversity-related publications that employ DL techniques across three stages. We define ten variables essential for method reproducibility, divided into four categories: resource requirements, methodological information, uncontrolled randomness, and statistical considerations. These categories subsequently serve as the basis for defining different levels of reproducibility. We manually extract the availability of these variables from a curated dataset comprising 61 publications identified using the keywords provided by biodiversity experts. Our study shows that the dataset is shared in 47% of the publications; however, a significant number of the publications lack comprehensive information on deep learning methods, including details regarding randomness.

Conventional intelligent systems based on deep neural network (DNN) models encounter challenges in achieving human-like continual learning due to catastrophic forgetting. Here, we propose a metaplasticity model inspired by human working memory, enabling DNNs to perform catastrophic forgetting-free continual learning without any pre- or post-processing. A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility. This strategy allowed the network to successfully learn a continuous stream of information, even under unexpected changes in input length. The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications, dynamically allocating memory resources to retain both old and new information. Furthermore, the model demonstrated robustness against data poisoning attacks by selectively filtering out erroneous memories, leveraging the Hebb repetition effect to reinforce the retention of significant data.

北京阿比特科技有限公司