Recent advancements in artificial intelligence (AI) and machine learning (ML) algorithms, coupled with the availability of faster computing infrastructure, have enhanced the security posture of cybersecurity operations centers (defenders) through the development of ML-aided network intrusion detection systems (NIDS). Concurrently, the abilities of adversaries to evade security have also increased with the support of AI/ML models. Therefore, defenders need to proactively prepare for evasion attacks that exploit the detection mechanisms of NIDS. Recent studies have found that the perturbation of flow-based and packet-based features can deceive ML models, but these approaches have limitations. Perturbations made to the flow-based features are difficult to reverse-engineer, while samples generated with perturbations to the packet-based features are not playable. Our methodological framework, Deep PackGen, employs deep reinforcement learning to generate adversarial packets and aims to overcome the limitations of approaches in the literature. By taking raw malicious network packets as inputs and systematically making perturbations on them, Deep PackGen camouflages them as benign packets while still maintaining their functionality. In our experiments, using publicly available data, Deep PackGen achieved an average adversarial success rate of 66.4\% against various ML models and across different attack types. Our investigation also revealed that more than 45\% of the successful adversarial samples were out-of-distribution packets that evaded the decision boundaries of the classifiers. The knowledge gained from our study on the adversary's ability to make specific evasive perturbations to different types of malicious packets can help defenders enhance the robustness of their NIDS against evolving adversarial attacks.
The multivariate adaptive regression spline (MARS) is one of the popular estimation methods for nonparametric multivariate regressions. However, as MARS is based on marginal splines, to incorporate interactions of covariates, products of the marginal splines must be used, which leads to an unmanageable number of basis functions when the order of interaction is high and results in low estimation efficiency. In this paper, we improve the performance of MARS by using linear combinations of the covariates which achieve sufficient dimension reduction. The special basis functions of MARS facilitate calculation of gradients of the regression function, and estimation of the linear combinations is obtained via eigen-analysis of the outer-product of the gradients. Under some technical conditions, the asymptotic theory is established for the proposed estimation method. Numerical studies including both simulation and empirical applications show its effectiveness in dimension reduction and improvement over MARS and other commonly-used nonparametric methods in regression estimation and prediction.
We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.
Internet of things (IoT) has been playing an important role in many sectors, such as smart cities, smart agriculture, smart healthcare, and smart manufacturing. However, IoT devices are highly vulnerable to cyber-attacks, which may result in security breaches and data leakages. To effectively prevent these attacks, a variety of machine learning-based network intrusion detection methods for IoT networks have been developed, which often rely on either feature extraction or feature selection techniques for reducing the dimension of input data before being fed into machine learning models. This aims to make the detection complexity low enough for real-time operations, which is particularly vital in any intrusion detection systems. This paper provides a comprehensive comparison between these two feature reduction methods of intrusion detection in terms of various performance metrics, namely, precision rate, recall rate, detection accuracy, as well as runtime complexity, in the presence of the modern UNSW-NB15 dataset as well as both binary and multiclass classification. For example, in general, the feature selection method not only provides better detection performance but also lower training and inference time compared to its feature extraction counterpart, especially when the number of reduced features K increases. However, the feature extraction method is much more reliable than its selection counterpart, particularly when K is very small, such as K = 4. Additionally, feature extraction is less sensitive to changing the number of reduced features K than feature selection, and this holds true for both binary and multiclass classifications. Based on this comparison, we provide a useful guideline for selecting a suitable intrusion detection type for each specific scenario, as detailed in Tab. 14 at the end of Section IV.
Object detection and segmentation are two core modules of an autonomous vehicle perception system. They should have high efficiency and low latency while reducing computational complexity. Currently, the most commonly used algorithms are based on deep neural networks, which guarantee high efficiency but require high-performance computing platforms. In the case of autonomous vehicles, i.e. cars, but also drones, it is necessary to use embedded platforms with limited computing power, which makes it difficult to meet the requirements described above. A reduction in the complexity of the network can be achieved by using an appropriate: architecture, representation (reduced numerical precision, quantisation, pruning), and computing platform. In this paper, we focus on the first factor - the use of so-called detection-segmentation networks as a component of a perception system. We considered the task of segmenting the drivable area and road markings in combination with the detection of selected objects (pedestrians, traffic lights, and obstacles). We compared the performance of three different architectures described in the literature: MultiTask V3, HybridNets, and YOLOP. We conducted the experiments on a custom dataset consisting of approximately 500 images of the drivable area and lane markings, and 250 images of detected objects. Of the three methods analysed, MultiTask V3 proved to be the best, achieving 99% mAP_50 for detection, 97% MIoU for drivable area segmentation, and 91% MIoU for lane segmentation, as well as 124 fps on the RTX 3060 graphics card. This architecture is a good solution for embedded perception systems for autonomous vehicles. The code is available at: //github.com/vision-agh/MMAR_2023.
In practically every industry today, artificial intelligence is one of the most effective ways for machines to assist humans. Since its inception, a large number of researchers throughout the globe have been pioneering the application of artificial intelligence in medicine. Although artificial intelligence may seem to be a 21st-century concept, Alan Turing pioneered the first foundation concept in the 1940s. Artificial intelligence in medicine has a huge variety of applications that researchers are continually exploring. The tremendous increase in computer and human resources has hastened progress in the 21st century, and it will continue to do so for many years to come. This review of the literature will highlight the emerging field of artificial intelligence in medicine and its current level of development.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.