亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Building robust, interpretable, and secure AI system requires quantifying and representing uncertainty under a probabilistic perspective to mimic human cognitive abilities. However, probabilistic computation presents significant challenges for most conventional artificial neural network, as they are essentially implemented in a deterministic manner. In this paper, we develop an efficient probabilistic computation framework by truncating the probabilistic representation of neural activation up to its mean and covariance and construct a moment neural network that encapsulates the nonlinear coupling between the mean and covariance of the underlying stochastic network. We reveal that when only the mean but not the covariance is supervised during gradient-based learning, the unsupervised covariance spontaneously emerges from its nonlinear coupling with the mean and faithfully captures the uncertainty associated with model predictions. Our findings highlight the inherent simplicity of probabilistic computation by seamlessly incorporating uncertainty into model prediction, paving the way for integrating it into large-scale AI systems.

相關內容

Testing for independence between two random vectors is a fundamental problem in statistics. It is observed from empirical studies that many existing omnibus consistent tests may not work well for some strongly nonmonotonic and nonlinear relationships. To explore the reasons behind this issue, we novelly transform the multivariate independence testing problem equivalently into checking the equality of two bivariate means. An important observation we made is that the power loss is mainly due to cancellation of positive and negative terms in dependence metrics, making them very close to zero. Motivated by this observation, we propose a class of consistent metrics with a positive integer $\gamma$ that exactly characterize independence. Theoretically, we show that the metrics with even and infinity $\gamma$ can effectively avoid the cancellation, and have high powers under the alternatives that two mean differences offset each other. Since we target at a wide range of dependence scenarios in practice, we further suggest to combine the p-values of test statistics with different $\gamma$'s through the Fisher's method. We illustrate the advantages of our proposed tests through extensive numerical studies.

Regular resolution is a refinement of the resolution proof system requiring that no variable be resolved on more than once along any path in the proof. It is known that there exist sequences of formulas that require exponential-size proofs in regular resolution while admitting polynomial-size proofs in resolution. Thus, with respect to the usual notion of simulation, regular resolution is separated from resolution. An alternative, and weaker, notion for comparing proof systems is that of an "effective simulation," which allows the translation of the formula along with the proof when moving between proof systems. We prove that regular resolution is equivalent to resolution under effective simulations. As a corollary, we recover in a black-box fashion a recent result on the hardness of automating regular resolution.

In this work, the high order accuracy and the well-balanced (WB) properties of some novel continuous interior penalty (CIP) stabilizations for the Shallow Water (SW) equations are investigated. The underlying arbitrary high order numerical framework is given by a Residual Distribution (RD)/continuous Galerkin (CG) finite element method (FEM) setting for the space discretization coupled with a Deferred Correction (DeC) time integration, to have a fully-explicit scheme. If, on the one hand, the introduced CIP stabilizations are all specifically designed to guarantee the exact preservation of the lake at rest steady state, on the other hand, some of them make use of general structures to tackle the preservation of general steady states, whose explicit analytical expression is not known. Several basis functions have been considered in the numerical experiments and, in all cases, the numerical results confirm the high order accuracy and the ability of the novel stabilizations to exactly preserve the lake at rest steady state and to capture small perturbations of such equilibrium. Moreover, some of them, based on the notions of space residual and global flux, have shown very good performances and superconvergences in the context of general steady solutions not known in closed-form. Many elements introduced here can be extended to other hyperbolic systems, e.g., to the Euler equations with gravity.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.

Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.

In observational studies, covariates with substantial missing data are often omitted, despite their strong predictive capabilities. These excluded covariates are generally believed not to simultaneously affect both treatment and outcome, indicating that they are not genuine confounders and do not impact the identification of the average treatment effect (ATE). In this paper, we introduce an alternative doubly robust (DR) estimator that fully leverages non-confounding predictive covariates to enhance efficiency, while also allowing missing values in such covariates. Beyond the double robustness property, our proposed estimator is designed to be more efficient than the standard DR estimator. Specifically, when the propensity score model is correctly specified, it achieves the smallest asymptotic variance among the class of DR estimators, and brings additional efficiency gains by further integrating predictive covariates. Simulation studies demonstrate the notable performance of the proposed estimator over current popular methods. An illustrative example is provided to assess the effectiveness of right heart catheterization (RHC) for critically ill patients.

This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.

北京阿比特科技有限公司