亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new representation learning framework, Intensity Profile Projection, for continuous-time dynamic network data. Given triples $(i,j,t)$, each representing a time-stamped ($t$) interaction between two entities ($i,j$), our procedure returns a continuous-time trajectory for each node, representing its behaviour over time. The framework consists of three stages: estimating pairwise intensity functions, e.g. via kernel smoothing; learning a projection which minimises a notion of intensity reconstruction error; and constructing evolving node representations via the learned projection. The trajectories satisfy two properties, known as structural and temporal coherence, which we see as fundamental for reliable inference. Moreoever, we develop estimation theory providing tight control on the error of any estimated trajectory, indicating that the representations could even be used in quite noise-sensitive follow-on analyses. The theory also elucidates the role of smoothing as a bias-variance trade-off, and shows how we can reduce the level of smoothing as the signal-to-noise ratio increases on account of the algorithm `borrowing strength' across the network.

相關內容

In this work, we present DeepEraser, an effective deep network for generic text removal. DeepEraser utilizes a recurrent architecture that erases the text in an image via iterative operations. Our idea comes from the process of erasing pencil script, where the text area designated for removal is subject to continuous monitoring and the text is attenuated progressively, ensuring a thorough and clean erasure. Technically, at each iteration, an innovative erasing module is deployed, which not only explicitly aggregates the previous erasing progress but also mines additional semantic context to erase the target text. Through iterative refinements, the text regions are progressively replaced with more appropriate content and finally converge to a relatively accurate status. Furthermore, a custom mask generation strategy is introduced to improve the capability of DeepEraser for adaptive text removal, as opposed to indiscriminately removing all the text in an image. Our DeepEraser is notably compact with only 1.4M parameters and trained in an end-to-end manner. To verify its effectiveness, extensive experiments are conducted on several prevalent benchmarks, including SCUT-Syn, SCUT-EnsText, and Oxford Synthetic text dataset. The quantitative and qualitative results demonstrate the effectiveness of our DeepEraser over the state-of-the-art methods, as well as its strong generalization ability in custom mask text removal. The codes and pre-trained models are available at //github.com/fh2019ustc/DeepEraser

Quantum Annealing (QA)-accelerated MIMO detection is an emerging research approach in the context of NextG wireless networks. The opportunity is to enable large MIMO systems and thus improve wireless performance. The approach aims to leverage QA to expedite the computation required for theoretically optimal but computationally-demanding Maximum Likelihood detection to overcome the limitations of the currently deployed linear detectors. This paper presents \textbf{X-ResQ}, a QA-based MIMO detector system featuring fine-grained quantum task parallelism that is uniquely enabled by the Reverse Annealing (RA) protocol. Unlike prior designs, X-ResQ has many desirable system properties for a parallel QA detector and has effectively improved detection performance as more qubits are assigned. In our evaluations on a state-of-the-art quantum annealer, fully parallel X-ResQ achieves near-optimal throughput (over 10 bits/s/Hz) for $4\times6$ MIMO with 16-QAM using six levels of parallelism with 240 qubits and $220~\mu$s QA compute time, achieving 2.5--5$\times$ gains compared against other tested detectors. For more comprehensive evaluations, we implement and evaluate X-ResQ in the non-quantum digital setting. This non-quantum X-ResQ demonstration showcases the potential to realize ultra-large $1024\times1024$ MIMO, significantly outperforming other MIMO detectors, including the state-of-the-art RA detector classically implemented in the same way.

This paper proposes an innovative Attention-GAN framework for enhancing cybersecurity, focusing on anomaly detection. In response to the challenges posed by the constantly evolving nature of cyber threats, the proposed approach aims to generate diverse and realistic synthetic attack scenarios, thereby enriching the dataset and improving threat identification. Integrating attention mechanisms with Generative Adversarial Networks (GANs) is a key feature of the proposed method. The attention mechanism enhances the model's ability to focus on relevant features, essential for detecting subtle and complex attack patterns. In addition, GANs address the issue of data scarcity by generating additional varied attack data, encompassing known and emerging threats. This dual approach ensures that the system remains relevant and effective against the continuously evolving cyberattacks. The KDD Cup and CICIDS2017 datasets were used to validate this model, which exhibited significant improvements in anomaly detection. It achieved an accuracy of 99.69% on the KDD dataset and 97.93% on the CICIDS2017 dataset, with precision, recall, and F1-scores above 97%, demonstrating its effectiveness in recognizing complex attack patterns. This study contributes significantly to cybersecurity by providing a scalable and adaptable solution for anomaly detection in the face of sophisticated and dynamic cyber threats. The exploration of GANs for data augmentation highlights a promising direction for future research, particularly in situations where data limitations restrict the development of cybersecurity systems. The attention-GAN framework has emerged as a pioneering approach, setting a new benchmark for advanced cyber-defense strategies.

As foundation models (FMs) continue to shape the landscape of AI, the in-context learning (ICL) paradigm thrives but also encounters issues such as toxicity, hallucination, disparity, adversarial vulnerability, and inconsistency. Ensuring the reliability and responsibility of FMs is crucial for the sustainable development of the AI ecosystem. In this concise overview, we investigate recent advancements in enhancing the reliability and trustworthiness of FMs within ICL frameworks, focusing on four key methodologies, each with its corresponding subgoals. We sincerely hope this paper can provide valuable insights for researchers and practitioners endeavoring to build safe and dependable FMs and foster a stable and consistent ICL environment, thereby unlocking their vast potential.

We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. Our project page is at: //github.com/VDIGPKU/DrivingGaussian.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司