亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-quality articulatory speech synthesis has many potential applications in speech science and technology. However, developing appropriate mappings from linguistic specification to articulatory gestures is difficult and time consuming. In this paper we construct an optimisation-based framework as a first step towards learning these mappings without manual intervention. We demonstrate the production of syllables with complex onsets and discuss the quality of the articulatory gestures with reference to coarticulation.

相關內容

語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成(Speech Synthesis),也(ye)(ye)稱為文語(yu)(yu)(yu)(yu)轉換(Text-to-Speech, TTS,它是將任意的(de)(de)(de)(de)輸入(ru)文本轉換成自(zi)然流暢的(de)(de)(de)(de)語(yu)(yu)(yu)(yu)音(yin)(yin)輸出。語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成涉(she)及到(dao)人工智能(neng)、心(xin)理(li)學、聲(sheng)學、語(yu)(yu)(yu)(yu)言(yan)學、數(shu)字(zi)信(xin)號(hao)處理(li)、計算機科學等(deng)多(duo)個學科技(ji)術,是信(xin)息處理(li)領域(yu)中(zhong)(zhong)的(de)(de)(de)(de)一項(xiang)前沿技(ji)術。 隨著計算機技(ji)術的(de)(de)(de)(de)不斷提高,語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成技(ji)術從早期(qi)的(de)(de)(de)(de)共振峰合(he)(he)成,逐步發展(zhan)為波(bo)形(xing)拼接合(he)(he)成和(he)統計參數(shu)語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成,再發展(zhan)到(dao)混(hun)合(he)(he)語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成;合(he)(he)成語(yu)(yu)(yu)(yu)音(yin)(yin)的(de)(de)(de)(de)質量、自(zi)然度已經得(de)到(dao)明(ming)顯提高,基本能(neng)滿(man)足一些特定(ding)場(chang)合(he)(he)的(de)(de)(de)(de)應(ying)用(yong)需求。目前,語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成技(ji)術在銀(yin)行、醫院等(deng)的(de)(de)(de)(de)信(xin)息播報系統、汽車(che)導航系統、自(zi)動應(ying)答呼叫中(zhong)(zhong)心(xin)等(deng)都有廣泛應(ying)用(yong),取得(de)了巨大(da)的(de)(de)(de)(de)經濟效益。 另(ling)外,隨著智能(neng)手機、MP3、PDA 等(deng)與我們生活密切相(xiang)關的(de)(de)(de)(de)媒介的(de)(de)(de)(de)大(da)量涌現,語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成的(de)(de)(de)(de)應(ying)用(yong)也(ye)(ye)在逐漸(jian)向娛樂、語(yu)(yu)(yu)(yu)音(yin)(yin)教學、康復治(zhi)療等(deng)領域(yu)深入(ru)。可以說語(yu)(yu)(yu)(yu)音(yin)(yin)合(he)(he)成正(zheng)在影響著人們生活的(de)(de)(de)(de)方方面面。

Recently, Winter and Hahn [1] commented on our work on identifying subtypes of major psychiatry disorders (MPDs) based on neurobiological features using machine learning [2]. They questioned the generalizability of our methods and the statistical significance, stability, and overfitting of the results, and proposed a pipeline for disease subtyping. We appreciate their earnest consideration of our work, however, we need to point out their misconceptions of basic machine-learning concepts and delineate some key issues involved.

This article introduces hinted dictionaries for expressing efficient ordered sets and maps functionally. As opposed to the traditional ordered dictionaries with logarithmic operations, hinted dictionaries can achieve better performance by using cursor-like objects referred to as hints. Hinted dictionaries unify the interfaces of imperative ordered dictionaries (e.g., C++ maps) and functional ones (e.g., Adams' sets). We show that such dictionaries can use sorted arrays, unbalanced trees, and balanced trees as their underlying representations. Throughout the article, we use Scala to present the different components of hinted dictionaries. We also provide a C++ implementation to evaluate the effectiveness of hinted dictionaries. Hinted dictionaries provide superior performance for set-set operations in comparison with the standard library of C++. Also, they show a competitive performance in comparison with the SciPy library for sparse vector operations.

Plagiarism in introductory programming courses is an enormous challenge for both students and institutions. For students, relying on the work of others too early in their academic development can make it impossible to acquire necessary skills for independent success in the future. For institutions, widespread student cheating can dilute the quality of the educational experience being offered. Currently available solutions consider only pairwise comparisons between student submissions and focus on punitive deterrence. Our approach instead relies on a class-wide statistical characterization that can be clearly and securely shared with students via an intuitive new p-value representing independence of student effort. A pairwise, compression-based similarity detection algorithm captures relationships between assignments more accurately. An automated deterrence system is used to warn students that their behavior is being closely monitored. High-confidence instances are made directly available for instructor review using our open-source toolkit. An unbiased scoring system aids students and the instructor in understanding true independence of effort. Preliminary results indicate that the system can provide meaningful measurements of independence from week one, improving the efficacy of technical education.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司