亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We report evidence of an undocumented method to manipulate citation counts involving 'sneaked' references. Sneaked references are registered as metadata for scientific articles in which they do not appear. This manipulation exploits trusted relationships between various actors: publishers, the Crossref metadata registration agency, digital libraries, and bibliometric platforms. By collecting metadata from various sources, we show that extra undue references are actually sneaked in at Digital Object Identifier (DOI) registration time, resulting in artificially inflated citation counts. As a case study, focusing on three journals from a given publisher, we identified at least 9% sneaked references (5,978/65,836) mainly benefiting two authors. Despite not existing in the articles, these sneaked references exist in metadata registries and inappropriately propagate to bibliometric dashboards. Furthermore, we discovered 'lost' references: the studied bibliometric platform failed to index at least 56% (36,939/65,836) of the references listed in the HTML version of the publications. The extent of the sneaked and lost references in the global literature remains unknown and requires further investigations. Bibliometric platforms producing citation counts should identify, quantify, and correct these flaws to provide accurate data to their patrons and prevent further citation gaming.

相關內容

By establishing an interesting connection between ordinary Bell polynomials and rational convolution powers, some composition and inverse relations of Bell polynomials as well as explicit expressions for convolution roots of sequences are obtained. Based on these results, a new method is proposed for calculation of partial Bell polynomials based on prime factorization. It is shown that this method is more efficient than the conventional recurrence procedure for computing Bell polynomials in most cases, requiring far less arithmetic operations. A detailed analysis of the computation complexity is provided, followed by some numerical evaluations.

Open peer review is a growing trend in academic publications. Public access to peer review data can benefit both the academic and publishing communities. It also serves as a great support to studies on review comment generation and further to the realization of automated scholarly paper review. However, most of the existing peer review datasets do not provide data that cover the whole peer review process. Apart from this, their data are not diversified enough as the data are mainly collected from the field of computer science. These two drawbacks of the currently available peer review datasets need to be addressed to unlock more opportunities for related studies. In response, we construct MOPRD, a multidisciplinary open peer review dataset. This dataset consists of paper metadata, multiple version manuscripts, review comments, meta-reviews, author's rebuttal letters, and editorial decisions. Moreover, we propose a modular guided review comment generation method based on MOPRD. Experiments show that our method delivers better performance as indicated by both automatic metrics and human evaluation. We also explore other potential applications of MOPRD, including meta-review generation, editorial decision prediction, author rebuttal generation, and scientometric analysis. MOPRD is a strong endorsement for further studies in peer review-related research and other applications.

We present a novel diffusion-based approach to generate synthetic histopathological Whole Slide Images (WSIs) at an unprecedented gigapixel scale. Synthetic WSIs have many potential applications: They can augment training datasets to enhance the performance of many computational pathology applications. They allow the creation of synthesized copies of datasets that can be shared without violating privacy regulations. Or they can facilitate learning representations of WSIs without requiring data annotations. Despite this variety of applications, no existing deep-learning-based method generates WSIs at their typically high resolutions. Mainly due to the high computational complexity. Therefore, we propose a novel coarse-to-fine sampling scheme to tackle image generation of high-resolution WSIs. In this scheme, we increase the resolution of an initial low-resolution image to a high-resolution WSI. Particularly, a diffusion model sequentially adds fine details to images and increases their resolution. In our experiments, we train our method with WSIs from the TCGA-BRCA dataset. Additionally to quantitative evaluations, we also performed a user study with pathologists. The study results suggest that our generated WSIs resemble the structure of real WSIs.

Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.

The remarkable generative capabilities of denoising diffusion models have raised new concerns regarding the authenticity of the images we see every day on the Internet. However, the vast majority of existing deepfake detection models are tested against previous generative approaches (e.g. GAN) and usually provide only a "fake" or "real" label per image. We believe a more informative output would be to augment the per-image label with a localization map indicating which regions of the input have been manipulated. To this end, we frame this task as a weakly-supervised localization problem and identify three main categories of methods (based on either explanations, local scores or attention), which we compare on an equal footing by using the Xception network as the common backbone architecture. We provide a careful analysis of all the main factors that parameterize the design space: choice of method, type of supervision, dataset and generator used in the creation of manipulated images; our study is enabled by constructing datasets in which only one of the components is varied. Our results show that weakly-supervised localization is attainable, with the best performing detection method (based on local scores) being less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.

Self-citations are a key topic in evaluative bibliometrics because they can artificially inflate citation-related performance indicators. Recently, self-citations defined at the largest scale, i.e., country self-citations, have started to attract the attention of researchers and policymakers. According to a recent research, in fact, the anomalous trends in the country self-citation rates of some countries, such as Italy, have been induced by the distorting effect of citation metrics-centered science policies. In the present study, we investigate the trends of country self-citations in 50 countries over the world in the period 1996-2019 using Scopus data. Results show that for most countries country self-citations have decreased over time. 12 countries (Colombia, Egypt, Indonesia, Iran, Italy, Malaysia, Pakistan, Romania, Russian Federation, Saudi Arabia, Thailand, and Ukraine), however, exhibit different behavior, with anomalous trends of self-citations. We argue that these anomalies should be attributed to the aggressive science policies adopted by these countries in recent years, which are all characterized by direct or indirect incentives for citations. Our analysis confirms that when bibliometric indicators are integrated into systems of incentives, they are capable of affecting rapidly and visibly the citation behavior of entire countries.

We present a framework for the efficient computation of optimal Bayesian decisions under intractable likelihoods, by learning a surrogate model for the expected utility (or its distribution) as a function of the action and data spaces. We leverage recent advances in simulation-based inference and Bayesian optimization to develop active learning schemes to choose where in parameter and action spaces to simulate. This allows us to learn the optimal action in as few simulations as possible. The resulting framework is extremely simulation efficient, typically requiring fewer model calls than the associated posterior inference task alone, and a factor of $100-1000$ more efficient than Monte-Carlo based methods. Our framework opens up new capabilities for performing Bayesian decision making, particularly in the previously challenging regime where likelihoods are intractable, and simulations expensive.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

We present a simple self-training method that achieves 87.4% top-1 accuracy on ImageNet, which is 1.0% better than the state-of-the-art model that requires 3.5B weakly labeled Instagram images. On robustness test sets, it improves ImageNet-A top-1 accuracy from 16.6% to 74.2%, reduces ImageNet-C mean corruption error from 45.7 to 31.2, and reduces ImageNet-P mean flip rate from 27.8 to 16.1. To achieve this result, we first train an EfficientNet model on labeled ImageNet images and use it as a teacher to generate pseudo labels on 300M unlabeled images. We then train a larger EfficientNet as a student model on the combination of labeled and pseudo labeled images. We iterate this process by putting back the student as the teacher. During the generation of the pseudo labels, the teacher is not noised so that the pseudo labels are as good as possible. But during the learning of the student, we inject noise such as data augmentation, dropout, stochastic depth to the student so that the noised student is forced to learn harder from the pseudo labels.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司