亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of fact-checking are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to a model to check a single response. In this work, we show how to build small fact-checking models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify datasets from recent work on fact-checking and grounding LLM generations into a new benchmark, LLM-AggreFact. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語言模型化 · AI · 圖像字幕 · 可理解性 ·
2024 年 11 月 7 日

Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data, making applications like image captioning, visual question answering, and multi-modal content creation possible. This ability to understand and work with complex information has made MLLMs useful in areas such as healthcare, autonomous systems, and digital content. However, integrating multiple types of data also creates security risks. Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses. This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies. We break down these attacks into categories: simple visual tweaks and cross-modal manipulations, as well as advanced strategies like VLATTACK, HADES, and Collaborative Multimodal Adversarial Attack (Co-Attack). These attacks can mislead even the most robust models while looking nearly identical to the original visuals, making them hard to detect. We also discuss the broader security risks, including threats to privacy and safety in important applications. To counter these risks, we review current defense methods like the SmoothVLM framework, pixel-wise randomization, and MirrorCheck, looking at their strengths and limitations. We also discuss new methods to make MLLMs more secure, including adaptive defenses, better evaluation tools, and security approaches that protect both visual and text data. By bringing together recent developments and identifying key areas for improvement, this review aims to support the creation of more secure and reliable multi-modal AI systems for real-world use.

What distinguishes robust models from non-robust ones? While for ImageNet distribution shifts it has been shown that such differences in robustness can be traced back predominantly to differences in training data, so far it is not known what that translates to in terms of what the model has learned. In this work, we bridge this gap by probing the representation spaces of 16 robust zero-shot CLIP vision encoders with various backbones (ResNets and ViTs) and pretraining sets (OpenAI, LAION-400M, LAION-2B, YFCC15M, CC12M and {DataComp}), and comparing them to the representation spaces of less robust models with identical backbones, but different (pre)training sets or objectives (CLIP pretraining on ImageNet-Captions, and supervised training or finetuning on ImageNet).Through this analysis, we generate three novel insights. Firstly, we detect the presence of outlier features in robust zero-shot CLIP vision encoders, which to the best of our knowledge is the first time these are observed in non-language and non-transformer models. Secondly, we find the existence of outlier features to be an indication of ImageNet shift robustness in models, since we only find them in robust models in our analysis. Lastly, we also investigate the number of unique encoded concepts in the representation space and find zero-shot CLIP models to encode a higher number of unique concepts in their representation space. However, we do not find this to be an indicator of ImageNet shift robustness and hypothesize that it is rather related to the language supervision. Since the presence of outlier features can be detected without access to any data from shifted datasets, we believe that they could be a useful tool for practitioners to get a feeling for the distribution shift robustness of a pretrained model during deployment.

The increasing volume and complexity of IoT systems demand a transition from the cloud-centric model to a decentralized IoT architecture in the so-called Computing Continuum, with no or minimal reliance on central servers. This paradigm shift, however, raises novel research concerns for decentralized coordination, calling for accurate policies. However, building such strategies is not trivial. Our work aims to relieve the DevOps engineers from this concern and propose a solution for autonomous, decentralized task allocation at runtime for IoT systems. To this end, we present a semantic communication approach and an ad-hoc lightweight coordination strategy based on Ant Colony Optimization (ACO). We compare the ACO strategy with Random Search and Gossip protocol-based algorithms. We conduct accurate experiments with up to a hundred nodes in both a static and a dynamic environment, i.e., with device outages. We show that ACO finds a matching node with the smallest hops and messages sent. While the Gossip strategy can allocate the most tasks successfully, ACO scales better, thus being a promising candidate for decentralized task coordination in IoT clusters.

Although fine-tuning Large Language Models (LLMs) with multilingual data can rapidly enhance the multilingual capabilities of LLMs, they still exhibit a performance gap between the dominant language (e.g., English) and non-dominant ones due to the imbalance of training data across languages. To further enhance the performance of non-dominant languages, we propose ShifCon, a Shift-based Contrastive framework that aligns the internal forward process of other languages toward that of the dominant one. Specifically, it shifts the representations of non-dominant languages into the dominant language subspace, allowing them to access relatively rich information encoded in the model parameters. The enriched representations are then shifted back into their original language subspace before generation. Moreover, we introduce a subspace distance metric to pinpoint the optimal layer area for shifting representations and employ multilingual contrastive learning to further enhance the alignment of representations within this area. Experiments demonstrate that our ShifCon framework significantly enhances the performance of non-dominant languages, particularly for low-resource ones. Further analysis offers extra insights to verify the effectiveness of ShifCon and propel future research

Although Large Language Models (LLMs) have demonstrated significant capabilities in executing complex tasks in a zero-shot manner, they are susceptible to jailbreak attacks and can be manipulated to produce harmful outputs. Recently, a growing body of research has categorized jailbreak attacks into token-level and prompt-level attacks. However, previous work primarily overlooks the diverse key factors of jailbreak attacks, with most studies concentrating on LLM vulnerabilities and lacking exploration of defense-enhanced LLMs. To address these issues, we introduced $\textbf{JailTrickBench}$ to evaluate the impact of various attack settings on LLM performance and provide a baseline for jailbreak attacks, encouraging the adoption of a standardized evaluation framework. Specifically, we evaluate the eight key factors of implementing jailbreak attacks on LLMs from both target-level and attack-level perspectives. We further conduct seven representative jailbreak attacks on six defense methods across two widely used datasets, encompassing approximately 354 experiments with about 55,000 GPU hours on A800-80G. Our experimental results highlight the need for standardized benchmarking to evaluate these attacks on defense-enhanced LLMs. Our code is available at //github.com/usail-hkust/JailTrickBench.

The rise of large foundation models, trained on extensive datasets, is revolutionizing the field of AI. Models such as SAM, DALL-E2, and GPT-4 showcase their adaptability by extracting intricate patterns and performing effectively across diverse tasks, thereby serving as potent building blocks for a wide range of AI applications. Autonomous driving, a vibrant front in AI applications, remains challenged by the lack of dedicated vision foundation models (VFMs). The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs in this field. This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions. Through a systematic analysis of over 250 papers, we dissect essential techniques for VFM development, including data preparation, pre-training strategies, and downstream task adaptation. Moreover, we explore key advancements such as NeRF, diffusion models, 3D Gaussian Splatting, and world models, presenting a comprehensive roadmap for future research. To empower researchers, we have built and maintained //github.com/zhanghm1995/Forge_VFM4AD, an open-access repository constantly updated with the latest advancements in forging VFMs for autonomous driving.

With the exponential surge in diverse multi-modal data, traditional uni-modal retrieval methods struggle to meet the needs of users demanding access to data from various modalities. To address this, cross-modal retrieval has emerged, enabling interaction across modalities, facilitating semantic matching, and leveraging complementarity and consistency between different modal data. Although prior literature undertook a review of the cross-modal retrieval field, it exhibits numerous deficiencies pertaining to timeliness, taxonomy, and comprehensiveness. This paper conducts a comprehensive review of cross-modal retrieval's evolution, spanning from shallow statistical analysis techniques to vision-language pre-training models. Commencing with a comprehensive taxonomy grounded in machine learning paradigms, mechanisms, and models, the paper then delves deeply into the principles and architectures underpinning existing cross-modal retrieval methods. Furthermore, it offers an overview of widely used benchmarks, metrics, and performances. Lastly, the paper probes the prospects and challenges that confront contemporary cross-modal retrieval, while engaging in a discourse on potential directions for further progress in the field. To facilitate the research on cross-modal retrieval, we develop an open-source code repository at //github.com/BMC-SDNU/Cross-Modal-Retrieval.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司