亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of $\omega$-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is $\omega$-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be $\omega$-regular. This provides a game-theoretic characterization of $\omega$-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which $\omega$-regularity depends on the value of some parameters.

相關內容

A tournament graph $T = \left(V, E \right)$ is an oriented complete graph, which can be used to model a round-robin tournament between $n$ players. In this paper, we address the problem of finding a champion of the tournament, also known as Copeland winner, which is a player that wins the highest number of matches. Solving this problem has important implications on several Information Retrieval applications, including Web search, conversational IR, machine translation, question answering, recommender systems, etc. Our goal is to solve the problem by minimizing the number of times we probe the adjacency matrix, i.e., the number of matches played. We prove that any deterministic/randomized algorithm finding a champion with constant success probability requires $\Omega(\ell n)$ comparisons, where $\ell$ is the number of matches lost by the champion. We then present an optimal deterministic algorithm matching this lower bound without knowing $\ell$ and we extend our analysis to three strictly related problems. Lastly, we conduct a comprehensive experimental assessment of the proposed algorithms to speed up a state-of-the-art solution for ranking on public data. Results show that our proposals speed up the retrieval of the champion up to $13\times$ in this scenario.

It is well known [Lov\'{a}sz, 1967] that up to isomorphism a graph $G$ is determined by the homomorphism counts $\hom(F, G)$, i.e., the number of homomorphisms from $F$ to $G$, where $F$ ranges over all graphs. Moreover, it suffices that $F$ ranges over the graphs with at most as many vertices as $G$. Thus in principle we can answer any query concerning $G$ with only accessing the $\hom(\cdot,G)$'s instead of $G$ itself. In this paper, we zoom in on those queries that can be answered using a constant number of $\hom(\cdot,G)$ for every graph $G$. We observe that if a query $\varphi$ is expressible as a Boolean combination of universal sentences in first-order logic, then whether a graph $G$ satisfies $\varphi$ can be determined by the vector \[\overrightarrow{\mathrm{hom}}_{F_1, \ldots, F_k}(G):= \big(\mathrm{hom}(F_1, G), \ldots, \mathrm{hom}(F_k, G)\big),\] where the graphs $F_1,\ldots,F_k$ only depend on $\varphi$. This leads to a query algorithm for $\varphi$ that is non-adaptive in the sense that those $F_i$ are independent of the input $G$. On the other hand, we prove that the existence of an isolated vertex, which is not definable by such a $\varphi$ but in first-order logic, cannot be determined by any $\overrightarrow{\mathrm{hom}}_{F_1, \ldots, F_k}(\cdot)$. These results provide a clear delineation of the power of non-adaptive query algorithms with access to a constant number of $\hom(\cdot, G)$'s. For adaptive query algorithms, i.e., algorithms that might access some $\hom(F_{i+1}, G)$ with $F_{i+1}$ depending on $\hom(F_1, G), \ldots, \hom(F_i, G)$, we show that three homomorphism counts $\hom(\cdot,G)$ are both sufficient and in general necessary to determine the graph $G$. In particular, by three adaptive queries we can answer any question on $G$. Moreover, adaptively accessing two $\hom(\cdot, G)$'s is already enough to detect an isolated vertex.

We give a short proof of a bound on the list chromatic number of graphs $G$ of maximum degree $\Delta$ where each neighbourhood has density at most $d$, namely $\chi_\ell(G) \le (1+o(1)) \frac{\Delta}{\ln \frac{\Delta}{d+1}}$ as $\frac{\Delta}{d+1} \to \infty$. This bound is tight up to an asymptotic factor $2$, which is the best possible barring a breakthrough in Ramsey theory, and strengthens results due to Vu, and more recently Davies, P., Kang, and Sereni. Our proof relies on the first moment method, and adapts a clever counting argument developed by Rosenfeld in the context of non-repetitive colourings. As a final touch, we show that our method provides an asymptotically tight lower bound on the number of colourings of locally sparse graphs.

The cooperative bandit problem is increasingly becoming relevant due to its applications in large-scale decision-making. However, most research for this problem focuses exclusively on the setting with perfect communication, whereas in most real-world distributed settings, communication is often over stochastic networks, with arbitrary corruptions and delays. In this paper, we study cooperative bandit learning under three typical real-world communication scenarios, namely, (a) message-passing over stochastic time-varying networks, (b) instantaneous reward-sharing over a network with random delays, and (c) message-passing with adversarially corrupted rewards, including byzantine communication. For each of these environments, we propose decentralized algorithms that achieve competitive performance, along with near-optimal guarantees on the incurred group regret as well. Furthermore, in the setting with perfect communication, we present an improved delayed-update algorithm that outperforms the existing state-of-the-art on various network topologies. Finally, we present tight network-dependent minimax lower bounds on the group regret. Our proposed algorithms are straightforward to implement and obtain competitive empirical performance.

We propose a topology optimisation of acoustic devices that work in a certain bandwidth. To achieve this, we define the objective function as the frequency-averaged sound intensity at given observation points, which is represented by a frequency integral over a given frequency band. It is, however, prohibitively expensive to evaluate such an integral naively by a quadrature. We thus estimate the frequency response by the Pad\'{e} approximation and integrate the approximated function to obtain the objective function. The corresponding topological derivative is derived with the help of the adjoint variable method and chain rule. It is shown that the objective and its sensitivity can be evaluated semi-analytically. We present efficient numerical procedures to compute them and incorporate them into a topology optimisation based on the level-set method. We confirm the validity and effectiveness of the present method through some numerical examples.

In the chasing convex bodies problem, an online player receives a request sequence of $N$ convex sets $K_1,\dots, K_N$ contained in a normed space $\mathbb R^d$. The player starts at $x_0\in \mathbb R^d$, and after observing each $K_n$ picks a new point $x_n\in K_n$. At each step the player pays a movement cost of $||x_n-x_{n-1}||$. The player aims to maintain a constant competitive ratio against the minimum cost possible in hindsight, i.e. knowing all requests in advance. The existence of a finite competitive ratio for convex body chasing was first conjectured in 1991 by Friedman and Linial. This conjecture was recently resolved with an exponential $2^{O(d)}$ upper bound on the competitive ratio. We give an improved algorithm achieving competitive ratio $d$ in any normed space, which is exactly tight for $\ell^{\infty}$. In Euclidean space, our algorithm also achieves competitive ratio $O(\sqrt{d\log N})$, nearly matching a $\sqrt{d}$ lower bound when $N$ is subexponential in $d$. The approach extends our prior work for nested convex bodies, which is based on the classical Steiner point of a convex body. We define the functional Steiner point of a convex function and apply it to the associated work function.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司