Modern recommender systems (RS) have profoundly enhanced user experience across digital platforms, yet they face significant threats from poisoning attacks. These attacks, aimed at manipulating recommendation outputs for unethical gains, exploit vulnerabilities in RS through injecting malicious data or intervening model training. This survey presents a unique perspective by examining these threats through the lens of an attacker, offering fresh insights into their mechanics and impacts. Concretely, we detail a systematic pipeline that encompasses four stages of a poisoning attack: setting attack goals, assessing attacker capabilities, analyzing victim architecture, and implementing poisoning strategies. The pipeline not only aligns with various attack tactics but also serves as a comprehensive taxonomy to pinpoint focuses of distinct poisoning attacks. Correspondingly, we further classify defensive strategies into two main categories: poisoning data filtering and robust training from the defender's perspective. Finally, we highlight existing limitations and suggest innovative directions for further exploration in this field.
For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.
Recently, detection transformers (DETRs) have gradually taken a dominant position in 2D detection thanks to their elegant framework. However, DETR-based detectors for 3D point clouds are still difficult to achieve satisfactory performance. We argue that the main challenges are twofold: 1) How to obtain the appropriate object queries is challenging due to the high sparsity and uneven distribution of point clouds; 2) How to implement an effective query interaction by exploiting the rich geometric structure of point clouds is not fully explored. To this end, we propose a simple and effective 3D DETR method (SEED) for detecting 3D objects from point clouds, which involves a dual query selection (DQS) module and a deformable grid attention (DGA) module. More concretely, to obtain appropriate queries, DQS first ensures a high recall to retain a large number of queries by the predicted confidence scores and then further picks out high-quality queries according to the estimated quality scores. DGA uniformly divides each reference box into grids as the reference points and then utilizes the predicted offsets to achieve a flexible receptive field, allowing the network to focus on relevant regions and capture more informative features. Extensive ablation studies on DQS and DGA demonstrate its effectiveness. Furthermore, our SEED achieves state-of-the-art detection performance on both the large-scale Waymo and nuScenes datasets, illustrating the superiority of our proposed method. The code is available at //github.com/happinesslz/SEED
To achieve high performance without substantial overheads associated with channel state information (CSI) of ground users, we consider a fixed-beam precoding approach, where a satellite forms multiple fixed-beams without relying on CSI, then select a suitable user set for each beam. Upon this precoding method, we put forth a satellite equipped with massive multiple-input multiple-output (MIMO), by which inter-beam interference is efficiently mitigated by narrowing corresponding beam width. By modeling the ground users' locations via a Poisson point process, we rigorously analyze the achievable performance of the presented multibeam satellite system. In particular, we investigate the asymptotic scaling laws that reveal the interplay between the user density, the number of beams, and the number of antennas. Our analysis offers critical design insights for the multibeam satellite with massive MIMO: i) If the user density scales in power with the number of antennas, the considered precoding can achieve a linear fraction of the optimal rate in the asymptotic regime. ii) A certain additional scaling factor for the user density is needed as the number of beams increases to maintain the asymptotic optimality.
In many consumer virtual reality (VR) applications, users embody predefined characters that offer minimal customization options, frequently emphasizing storytelling over user choice. We explore whether matching a user's physical characteristics, specifically ethnicity and gender, with their virtual self-avatar affects their sense of embodiment in VR. We conducted a 2 x 2 within-subjects experiment (n=32) with a diverse user population to explore the impact of matching or not matching a user's self-avatar to their ethnicity and gender on their sense of embodiment. Our results indicate that matching the ethnicity of the user and their self-avatar significantly enhances sense of embodiment regardless of gender, extending across various aspects, including appearance, response, and ownership. We also found that matching gender significantly enhanced ownership, suggesting that this aspect is influenced by matching both ethnicity and gender. Interestingly, we found that matching ethnicity specifically affects self-location while matching gender specifically affects one's body ownership.
Contemporary robots have become exceptionally skilled at achieving specific tasks in structured environments. However, they often fail when faced with the limitless permutations of real-world unstructured environments. This motivates robotics methods which learn from experience, rather than follow a pre-defined set of rules. In this thesis, we present a range of learning-based methods aimed at enabling robots, operating in dynamic and unstructured environments, to better understand their surroundings, anticipate the actions of others, and take informed actions accordingly.
Recommendation systems usually recommend the existing contents to different users. However, in comparison to static recommendation methods, a recommendation logic that dynamically adjusts based on user interest preferences may potentially attract a larger user base. Thus, we consider paraphrasing existing content based on the interests of the users to modify the content to better align with the preferences of users. In this paper, we propose a new task named Target-Audience Oriented Content Paraphrase aims to generate more customized contents for the target audience. We introduce the task definition and the corresponding framework for the proposed task and the creation of the corresponding datasets. We utilize the Large Language Models (LLMs) and Large Vision Models (LVMs) to accomplish the base implementation of the TOP framework and provide the referential baseline results for the proposed task.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.