亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research in derivative-free global optimization is under active development, and many solution techniques are available today. Therefore, the experimental comparison of previous and emerging algorithms must be kept up to date. This paper considers the solution to the bound-constrained, possibly black-box global optimization problem. It compares 64 derivative-free deterministic algorithms against classic and state-of-the-art stochastic solvers. Among deterministic ones, a particular emphasis is on DIRECT-type, where, in recent years, significant progress has been made. A set of 800 test problems generated by the well-known GKLS generator and 397 traditional test problems from DIRECTGOLib v1.2 collection are utilized in a computational study. More than 239400 solver runs were carried out, requiring more than 531 days of single CPU time to complete them. It has been found that deterministic algorithms perform excellently on GKLS-type and low-dimensional problems, while stochastic algorithms have shown to be more efficient in higher dimensions.

相關內容

We consider the interaction among agents engaging in a driving task and we model it as general-sum game. This class of games exhibits a plurality of different equilibria posing the issue of equilibrium selection. While selecting the most efficient equilibrium (in term of social cost) is often impractical from a computational standpoint, in this work we study the (in)efficiency of any equilibrium players might agree to play. More specifically, we bound the equilibrium inefficiency by modeling driving games as particular type of congestion games over spatio-temporal resources. We obtain novel guarantees that refine existing bounds on the Price of Anarchy (PoA) as a function of problem-dependent game parameters. For instance, the relative trade-off between proximity costs and personal objectives such as comfort and progress. Although the obtained guarantees concern open-loop trajectories, we observe efficient equilibria even when agents employ closed-loop policies trained via decentralized multi-agent reinforcement learning.

In probably approximately correct (PAC) reinforcement learning (RL), an agent is required to identify an $\epsilon$-optimal policy with probability $1-\delta$. While minimax optimal algorithms exist for this problem, its instance-dependent complexity remains elusive in episodic Markov decision processes (MDPs). In this paper, we propose the first nearly matching (up to a horizon squared factor and logarithmic terms) upper and lower bounds on the sample complexity of PAC RL in deterministic episodic MDPs with finite state and action spaces. In particular, our bounds feature a new notion of sub-optimality gap for state-action pairs that we call the deterministic return gap. While our instance-dependent lower bound is written as a linear program, our algorithms are very simple and do not require solving such an optimization problem during learning. Their design and analyses employ novel ideas, including graph-theoretical concepts (minimum flows) and a new maximum-coverage exploration strategy.

Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at //www.memprompt.com/.

Projection-based model order reduction allows for the parsimonious representation of full order models (FOMs), typically obtained through the discretization of certain partial differential equations (PDEs) using conventional techniques where the discretization may contain a very large number of degrees of freedom. As a result of this more compact representation, the resulting projection-based reduced order models (ROMs) can achieve considerable computational speedups, which are especially useful in real-time or multi-query analyses. One known deficiency of projection-based ROMs is that they can suffer from a lack of robustness, stability and accuracy, especially in the predictive regime, which ultimately limits their useful application. Another research gap that has prevented the widespread adoption of ROMs within the modeling and simulation community is the lack of theoretical and algorithmic foundations necessary for the "plug-and-play" integration of these models into existing multi-scale and multi-physics frameworks. This paper describes a new methodology that has the potential to address both of the aforementioned deficiencies by coupling projection-based ROMs with each other as well as with conventional FOMs by means of the Schwarz alternating method. Leveraging recent work that adapted the Schwarz alternating method to enable consistent and concurrent multi-scale coupling of finite element FOMs in solid mechanics, we present a new extension of the Schwarz formulation that enables ROM-FOM and ROM-ROM coupling in nonlinear solid mechanics. In order to maintain efficiency, we employ hyper-reduction via the Energy-Conserving Sampling and Weighting approach. We evaluate the proposed coupling approach in the reproductive as well as in the predictive regime on a canonical test case that involves the dynamic propagation of a traveling wave in a nonlinear hyper-elastic material.

Stochastic versions of proximal methods have gained much attention in statistics and machine learning. These algorithms tend to admit simple, scalable forms, and enjoy numerical stability via implicit updates. In this work, we propose and analyze a stochastic version of the recently proposed proximal distance algorithm, a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter $\rho \rightarrow \infty$. By uncovering connections to related stochastic proximal methods and interpreting the penalty parameter as the learning rate, we justify heuristics used in practical manifestations of the proximal distance method, establishing their convergence guarantees for the first time. Moreover, we extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates regimes. We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.

Derivative-free prompt learning has emerged as a lightweight alternative to prompt tuning, which only requires model inference to optimize the prompts. However, existing work did not take full advantage of the over-parameterized characteristics of large pre-trained language models (PLMs). In this paper, we propose Clip-Tuning, a simple yet effective method that adopts diverse frozen "thinned" networks of PLMs to obtain a mixture of rewards and thus advance the derivative-free prompt learning. The thinned networks consist of all the hidden units that survive a stationary dropout strategy, whose inference predictions reflect an ensemble of partial views over prompted training samples. Our method outperforms previous gradient-free prompt learning methods and achieves parity with gradient-based counterparts on seven language understanding benchmarks under few-shot settings.

We present a novel sequential Monte Carlo approach to online smoothing of additive functionals in a very general class of path-space models. Hitherto, the solutions proposed in the literature suffer from either long-term numerical instability due to particle-path degeneracy or, in the case that degeneracy is remedied by particle approximation of the so-called backward kernel, high computational demands. In order to balance optimally computational speed against numerical stability, we propose to furnish a (fast) naive particle smoother, propagating recursively a sample of particles and associated smoothing statistics, with an adaptive backward-sampling-based updating rule which allows the number of (costly) backward samples to be kept at a minimum. This yields a new, function-specific additive smoothing algorithm, AdaSmooth, which is computationally fast, numerically stable and easy to implement. The algorithm is provided with rigorous theoretical results guaranteeing its consistency, asymptotic normality and long-term stability as well as numerical results demonstrating empirically the clear superiority of AdaSmooth to existing algorithms.

The profitable tour problem (PTP) is a well-known NP-hard routing problem searching for a tour visiting a subset of customers while maximizing profit as the difference between total revenue collected and traveling costs. PTP is known to be solvable in polynomial time when special structures of the underlying graph are considered. However, the computational complexity of the corresponding probabilistic generalizations is still an open issue in many cases. In this paper, we analyze the probabilistic PTP where customers are located on a tree and need, with a known probability, for a service provision at a predefined prize. The problem objective is to select a priori a subset of customers with whom to commit the service so to maximize the expected profit. We provide a polynomial time algorithm computing the optimal solution in $O(n^2)$, where $n$ is the number of nodes in the tree.

In recent years, there has been significant research interest in solving Quadratic Unconstrained Binary Optimisation (QUBO) problems. Physics-inspired optimisation algorithms have been proposed for deriving optimal or sub-optimal solutions to QUBOs. These methods are particularly attractive within the context of using specialised hardware, such as quantum computers, application specific CMOS and other high performance computing resources for solving optimisation problems. These solvers are then applied to QUBO formulations of combinatorial optimisation problems. Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems. However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made. In this study, we compare methods of deriving scalarisation weights when combining two objectives of the cardinality constrained mean-variance portfolio optimisation problem into one. We show significant performance improvement (measured in terms of hypervolume) when using a method that iteratively fills the largest space in the Pareto front compared to a n\"aive approach using uniformly generated weights.

The goal of cryptocurrencies is decentralization. In principle, all currencies have equal status. Unlike traditional stock markets, there is no default currency of denomination (fiat), thus the trading pairs can be set freely. However, it is impractical to set up a trading market between every two currencies. In order to control management costs and ensure sufficient liquidity, we must give priority to covering those large-volume trading pairs and ensure that all coins are reachable. We note that this is an optimization problem. Its particularity lies in: 1) the trading volume between most (>99.5%) possible trading pairs cannot be directly observed. 2) It satisfies the connectivity constraint, that is, all currencies are guaranteed to be tradable. To solve this problem, we use a two-stage process: 1) Fill in missing values based on a regularized, truncated eigenvalue decomposition, where the regularization term is used to control what extent missing values should be limited to zero. 2) Search for the optimal trading pairs, based on a branch and bound process, with heuristic search and pruning strategies. The experimental results show that: 1) If the number of denominated coins is not limited, we will get a more decentralized trading pair settings, which advocates the establishment of trading pairs directly between large currency pairs. 2) There is a certain room for optimization in all exchanges. The setting of inappropriate trading pairs is mainly caused by subjectively setting small coins to quote, or failing to track emerging big coins in time. 3) Too few trading pairs will lead to low coverage; too many trading pairs will need to be adjusted with markets frequently. Exchanges should consider striking an appropriate balance between them.

北京阿比特科技有限公司