亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Question answer generation using Natural Language Processing models is ubiquitous in the world around us. It is used in many use cases such as the building of chat bots, suggestive prompts in google search and also as a way of navigating information in banking mobile applications etc. It is highly relevant because a frequently asked questions (FAQ) list can only have a finite amount of questions but a model which can perform question answer generation could be able to answer completely new questions that are within the scope of the data. This helps us to be able to answer new questions accurately as long as it is a relevant question. In commercial applications, it can be used to increase customer satisfaction and ease of usage. However a lot of data is generated by humans so it is susceptible to human error and this can adversely affect the model's performance and we are investigating this through our work

相關內容

自(zi)(zi)(zi)動問答(Question Answering, QA)是指利(li)用計(ji)算機自(zi)(zi)(zi)動回答用戶(hu)所提出的(de)問題以滿足用戶(hu)知識(shi)需求的(de)任務。不同于現有搜索引擎,問答系統是信息服務的(de)一種高級形式,系統返回用戶(hu)的(de)不再是基于關鍵詞匹配(pei)排(pai)序的(de)文檔(dang)列表,而是精準的(de)自(zi)(zi)(zi)然語(yu)言(yan)答案。近年來,隨著人工智能的(de)飛速發(fa)展,自(zi)(zi)(zi)動問答已經成為倍(bei)受關注(zhu)且發(fa)展前景(jing)廣泛的(de)研究方(fang)向。

知識薈萃

精(jing)品入門和進(jin)階教程、論(lun)文和代碼整(zheng)理等(deng)

更多

查看相關VIP內容(rong)、論文(wen)、資訊等(deng)

This paper proposes two methods for causal additive models with unobserved variables (CAM-UV). CAM-UV assumes that the causal functions take the form of generalized additive models and that latent confounders are present. First, we propose a method that leverages prior knowledge for efficient causal discovery. Then, we propose an extension of this method for inferring causality in time series data. The original CAM-UV algorithm differs from other existing causal function models in that it does not seek the causal order between observed variables, but rather aims to identify the causes for each observed variable. Therefore, the first proposed method in this paper utilizes prior knowledge, such as understanding that certain variables cannot be causes of specific others. Moreover, by incorporating the prior knowledge that causes precedes their effects in time, we extend the first algorithm to the second method for causal discovery in time series data. We validate the first proposed method by using simulated data to demonstrate that the accuracy of causal discovery increases as more prior knowledge is accumulated. Additionally, we test the second proposed method by comparing it with existing time series causal discovery methods, using both simulated data and real-world data.

The advent of Federated Learning has enabled the creation of a high-performing model as if it had been trained on a considerable amount of data. A multitude of participants and a server cooperatively train a model without the need for data disclosure or collection. The healthcare industry, where security and privacy are paramount, can substantially benefit from this new learning paradigm, as data collection is no longer feasible due to stringent data policies. Nonetheless, unaddressed challenges and insufficient attack mitigation are hampering its adoption. Attack surfaces differ from traditional centralized learning in that the server and clients communicate between each round of training. In this paper, we thus present vulnerabilities, attacks, and defenses based on the widened attack surfaces, as well as suggest promising new research directions toward a more robust FL.

Normalizing Flows have emerged as a powerful brand of generative models, as they not only allow for efficient sampling of complicated target distributions, but also deliver density estimation by construction. We propose here an in-depth comparison of coupling and autoregressive flows, both of the affine and rational quadratic spline type, considering four different architectures: Real-valued Non-Volume Preserving (RealNVP), Masked Autoregressive Flow (MAF), Coupling Rational Quadratic Spline (C-RQS), and Autoregressive Rational Quadratic Spline (A-RQS). We focus on a set of multimodal target distributions of increasing dimensionality ranging from 4 to 400. The performances are compared by means of different test-statistics for two-sample tests, built from known distance measures: the sliced Wasserstein distance, the dimension-averaged one-dimensional Kolmogorov-Smirnov test, and the Frobenius norm of the difference between correlation matrices. Furthermore, we include estimations of the variance of both the metrics and the trained models. Our results indicate that the A-RQS algorithm stands out both in terms of accuracy and training speed. Nonetheless, all the algorithms are generally able, without too much fine-tuning, to learn complicated distributions with limited training data and in a reasonable time, of the order of hours on a Tesla A40 GPU. The only exception is the C-RQS, which takes significantly longer to train, does not always provide good accuracy, and becomes unstable for large dimensionalities. All algorithms have been implemented using TensorFlow2 and TensorFlow Probability and made available on \href{//github.com/NF4HEP/NormalizingFlowsHD}{GitHub}.

Many companies rely on APIs of managed AI models such as OpenAI's GPT-4 to create AI-enabled experiences in their products. Along with the benefits of ease of use and shortened time to production, this reliance on proprietary APIs has downsides in terms of model control, performance reliability, up-time predictability, and cost. At the same time, there has been a flurry of open source small language models (SLMs) that have been made available for commercial use. However, their readiness to replace existing capabilities remains unclear, and a systematic approach to test these models is not readily available. In this paper, we present a systematic evaluation methodology for, and characterization of, modern open source SLMs and their trade-offs when replacing a proprietary LLM APIs for a real-world product feature. We have designed SLaM, an automated analysis tool that enables the quantitative and qualitative testing of product features utilizing arbitrary SLMs. Using SLaM, we examine both the quality and the performance characteristics of modern SLMs relative to an existing customer-facing OpenAI-based implementation. We find that across 9 SLMs and 29 variants, we observe competitive quality-of-results for our use case, significant performance consistency improvement, and a cost reduction of 5x-29x when compared to OpenAI GPT-4.

Probabilistic mixture models are acknowledged as a valuable tool for unsupervised outlier detection owing to their interpretability and intuitive grounding in statistical principles. Within this framework, Dirichlet process mixture models emerge as a compelling alternative to conventional finite mixture models for both clustering and outlier detection tasks. However, despite their evident advantages, the widespread adoption of Dirichlet process mixture models in unsupervised outlier detection has been hampered by challenges related to computational inefficiency and sensitivity to outliers during the construction of detectors. To tackle these challenges, we propose a novel outlier detection method based on ensembles of Dirichlet process Gaussian mixtures. The proposed method is a fully unsupervised algorithm that capitalizes on random subspace and subsampling ensembles, not only ensuring efficient computation but also enhancing the robustness of the resulting outlier detector. Moreover, the proposed method leverages variational inference for Dirichlet process mixtures to ensure efficient and fast computation. Empirical studies with benchmark datasets demonstrate that our method outperforms existing approaches for unsupervised outlier detection.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司