亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend the ultraspherical spectral method to solving nonlinear ODE boundary value problems. We propose to use the inexact Newton-GMRES framework for which an effective preconditioner can be constructed and a fast Jacobian-vector multiplication can be effected, thanks to the structured operators of the ultraspherical spectral method. With a mixed-precision implementation, the inexact Newton-GMRES-ultraspherical framework exhibits extraordinary speed and accuracy, as we show by extensive numerical experiments.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

We consider a linear implicit-explicit (IMEX) time discretization of the Cahn-Hilliard equation with a source term, endowed with Dirichlet boundary conditions. For every time step small enough, we build an exponential attractor of the discrete-in-time dynamical system associated to the discretization. We prove that, as the time step tends to 0, this attractor converges for the symmmetric Hausdorff distance to an exponential attractor of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension of the exponential attractor (and consequently, of the global attractor) is bounded by a constant independent of the time step. The results also apply to the classical Cahn-Hilliard equation with Neumann boundary conditions.

The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. Because of its high efficiency, this method has been used in various applications. In the Sinc approximation, the mesh size and truncation numbers should be optimally selected to achieve its best performance. However, the standard selection formula has only been "near-optimally" selected because the optimal formula of the mesh size cannot be expressed in terms of elementary functions of truncation numbers. In this study, we propose two improved selection formulas. The first one is based on the concept by an earlier research that resulted in a better selection formula for the double-exponential formula. The formula performs slightly better than the standard one, but is still not optimal. As a second selection formula, we introduce a new parameter to propose truly optimal selection formula. We provide explicit error bounds for both selection formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a much better error bound than the standard and first formulas.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the boundary value of the solution of the first Laplacian problem. This technique yields a global linear problem that can be solved iteratively via a Krylov-type method. More precisely, at each iteration of the scheme, two second-order elliptic problems have to be solved, and a normal derivative on the boundary has to be computed. In this work, we specialize this scheme for the HHO discretization. To this aim, an explicit technique to compute the discrete normal derivative of an HHO solution of a Laplacian problem is proposed. Moreover, we show that the resulting discrete scheme is well-posed. Finally, a new preconditioner is designed to speed up the convergence of the Krylov method. Numerical experiments assessing the performance of the proposed iterative algorithm on both two- and three-dimensional test cases are presented.

In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation, the corresponding random PDE admits a solution random field which, for almost all realizations of the random coefficients, can be written as a classical solution of a linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 25 dimensions with fast run times.

We consider the problem of numerically computing the quantum dynamics of an electron in twisted bilayer graphene. The challenge is that atomic-scale models of the dynamics are aperiodic for generic twist angles because of the incommensurability of the layers. The Bistritzer-MacDonald PDE model, which is periodic with respect to the bilayer's moir\'e pattern, has recently been shown to rigorously describe these dynamics in a parameter regime. In this work, we first prove that the dynamics of the tight-binding model of incommensurate twisted bilayer graphene can be approximated by computations on finite domains. The main ingredient of this proof is a speed of propagation estimate proved using Combes-Thomas estimates. We then provide extensive numerical computations which clarify the range of validity of the Bistritzer-MacDonald model.

Two new omnibus tests of uniformity for data on the hypersphere are proposed. The new test statistics exploit closed-form expressions for orthogonal polynomials, feature tuning parameters, and are related to a "smooth maximum" function and the Poisson kernel. We obtain exact moments of the test statistics under uniformity and rotationally symmetric alternatives, and give their null asymptotic distributions. We consider approximate oracle tuning parameters that maximize the power of the tests against known generic alternatives and provide tests that estimate oracle parameters through cross-validated procedures while maintaining the significance level. Numerical experiments explore the effectiveness of null asymptotic distributions and the accuracy of inexpensive approximations of exact null distributions. A simulation study compares the powers of the new tests with other tests of the Sobolev class, showing the benefits of the former. The proposed tests are applied to the study of the (seemingly uniform) nursing times of wild polar bears.

This work is concerned with kinetic equations with velocity of constant magnitude. We propose a quadrature method of moments based on the Poisson kernel, called Poisson-EQMOM. The derived moment closure systems are well defined for all physically relevant moments and the resultant approximations of the distribution function converge as the number of moments goes to infinity. The convergence makes our method stand out from most existing moment methods. Moreover, we devise a delicate moment inversion algorithm. As an application, the Vicsek model is studied for overdamped active particles. Then the Poisson-EQMOM is validated with a series of numerical tests including spatially homogeneous, one-dimensional and two-dimensional problems.

We investigate quantum phase transitions in the transverse field Ising chain with algebraically decaying long-range antiferromagnetic interactions by using the variational Monte Carlo method with the restricted Boltzmann machine being employed as a trial wave function ansatz. In the finite-size scaling analysis with the order parameter and the second R\'enyi entropy, we find that the central charge deviates from 1/2 at a small decay exponent $\alpha_\mathrm{LR}$ in contrast to the critical exponents staying very close to the short-range (SR) Ising values regardless of $\alpha_\mathrm{LR}$ examined, supporting the previously proposed scenario of conformal invariance breakdown. To identify the threshold of the Ising universality and the conformal symmetry, we perform two additional tests for the universal Binder ratio and the conformal field theory (CFT) description of the correlation function. It turns out that both indicate a noticeable deviation from the SR Ising class at $\alpha_\mathrm{LR} < 2$. However, a closer look at the scaled correlation function for $\alpha_\mathrm{LR} \ge 2$ shows a gradual change from the asymptotic line of the CFT verified at $\alpha_\mathrm{LR} = 3$, providing a rough estimate of the threshold being in the range of $2 \lesssim \alpha_\mathrm{LR} < 3$.

In this paper, we present two non-overlapping Schwarz algorithms for the hybridizable discontinuous Galerkin (HDG) method. The first algorithm is based on the Neumann-Neumann method. The second one is an iterative algorithm uses both trace and flux interface unknowns on interfaces between subdomains. Numerical results are provided to verify the validity of our algorithms.

北京阿比特科技有限公司