Secure model aggregation is a key component of federated learning (FL) that aims at protecting the privacy of each user's individual model, while allowing their global aggregation. It can be applied to any aggregation-based approaches, including algorithms for training a global model, as well as personalized FL frameworks. Model aggregation needs to also be resilient to likely user dropouts in FL system, making its design substantially more complex. State-of-the-art secure aggregation protocols essentially rely on secret sharing of the random-seeds that are used for mask generations at the users, in order to enable the reconstruction and cancellation of those belonging to dropped users. The complexity of such approaches, however, grows substantially with the number of dropped users. We propose a new approach, named LightSecAgg, to overcome this bottleneck by turning the focus from "random-seed reconstruction of the dropped users" to "one-shot aggregate-mask reconstruction of the active users". More specifically, in LightSecAgg each user protects its local model by generating a single random mask. This mask is then encoded and shared to other users, in such a way that the aggregate-mask of any sufficiently large set of active users can be reconstructed directly at the server via encoded masks. We show that LightSecAgg achieves the same privacy and dropout-resiliency guarantees as the state-of-the-art protocols, while significantly reducing the overhead for resiliency to dropped users. Furthermore, our system optimization helps to hide the runtime cost of offline processing by parallelizing it with model training. We evaluate LightSecAgg via extensive experiments for training diverse models on various datasets in a realistic FL system, and demonstrate that LightSecAgg significantly reduces the total training time, achieving a performance gain of up to $12.7\times$ over baselines.
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients, while keeping the training data decentralized in order to preserve data privacy. However, standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model. In this paper, we first analyze the noisy client statement, and then model noisy clients with different noise distributions (e.g., Bernoulli and truncated Gaussian distributions). To learn with noisy clients, we propose a simple yet effective FL framework, named Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components: a data quality measurement (DQM) to dynamically quantify the data quality of each participating client, and a noise robust aggregation (NRA) to adaptively aggregate the local models of each client by jointly considering the amount of local training data and the data quality of each client. Our Fed-NCL can be easily applied in any standard FL workflow to handle the noisy client issue. Experimental results on various datasets demonstrate that our algorithm boosts the performances of different state-of-the-art systems with noisy clients.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
There has been a surge of interest in continual learning and federated learning, both of which are important in deep neural networks in real-world scenarios. Yet little research has been done regarding the scenario where each client learns on a sequence of tasks from a private local data stream. This problem of federated continual learning poses new challenges to continual learning, such as utilizing knowledge from other clients, while preventing interference from irrelevant knowledge. To resolve these issues, we propose a novel federated continual learning framework, Federated Weighted Inter-client Transfer (FedWeIT), which decomposes the network weights into global federated parameters and sparse task-specific parameters, and each client receives selective knowledge from other clients by taking a weighted combination of their task-specific parameters. FedWeIT minimizes interference between incompatible tasks, and also allows positive knowledge transfer across clients during learning. We validate our \emph{FedWeIT}~against existing federated learning and continual learning methods under varying degrees of task similarity across clients, and our model significantly outperforms them with a large reduction in the communication cost.
News recommendation aims to display news articles to users based on their personal interest. Existing news recommendation methods rely on centralized storage of user behavior data for model training, which may lead to privacy concerns and risks due to the privacy-sensitive nature of user behaviors. In this paper, we propose a privacy-preserving method for news recommendation model training based on federated learning, where the user behavior data is locally stored on user devices. Our method can leverage the useful information in the behaviors of massive number users to train accurate news recommendation models and meanwhile remove the need of centralized storage of them. More specifically, on each user device we keep a local copy of the news recommendation model, and compute gradients of the local model based on the user behaviors in this device. The local gradients from a group of randomly selected users are uploaded to server, which are further aggregated to update the global model in the server. Since the model gradients may contain some implicit private information, we apply local differential privacy (LDP) to them before uploading for better privacy protection. The updated global model is then distributed to each user device for local model update. We repeat this process for multiple rounds. Extensive experiments on a real-world dataset show the effectiveness of our method in news recommendation model training with privacy protection.
Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.
Methods proposed in the literature towards continual deep learning typically operate in a task-based sequential learning setup. A sequence of tasks is learned, one at a time, with all data of current task available but not of previous or future tasks. Task boundaries and identities are known at all times. This setup, however, is rarely encountered in practical applications. Therefore we investigate how to transform continual learning to an online setup. We develop a system that keeps on learning over time in a streaming fashion, with data distributions gradually changing and without the notion of separate tasks. To this end, we build on the work on Memory Aware Synapses, and show how this method can be made online by providing a protocol to decide i) when to update the importance weights, ii) which data to use to update them, and iii) how to accumulate the importance weights at each update step. Experimental results show the validity of the approach in the context of two applications: (self-)supervised learning of a face recognition model by watching soap series and learning a robot to avoid collisions.
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. The optimal cost function of the aggregate problem, a nonlinear function of the features, serves as an architecture for approximation in value space of the optimal cost function or the cost functions of policies of the original problem. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with reinforcement learning based on deep neural networks, which is used to obtain the needed features. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by deep reinforcement learning, thereby potentially leading to more effective policy improvement.