亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Local Attention-guided Message Passing Mechanism (LAMP) adopted in Graph Attention Networks (GATs) is designed to adaptively learn the importance of neighboring nodes for better local aggregation on the graph, which can bring the representations of similar neighbors closer effectively, thus showing stronger discrimination ability. However, existing GATs suffer from a significant discrimination ability decline in heterophilic graphs because the high proportion of dissimilar neighbors can weaken the self-attention of the central node, jointly resulting in the deviation of the central node from similar nodes in the representation space. This kind of effect generated by neighboring nodes is called the Distraction Effect (DE) in this paper. To estimate and weaken the DE of neighboring nodes, we propose a Causally graph Attention network for Trimming heterophilic graph (CAT). To estimate the DE, since the DE are generated through two paths (grab the attention assigned to neighbors and reduce the self-attention of the central node), we use Total Effect to model DE, which is a kind of causal estimand and can be estimated from intervened data; To weaken the DE, we identify the neighbors with the highest DE (we call them Distraction Neighbors) and remove them. We adopt three representative GATs as the base model within the proposed CAT framework and conduct experiments on seven heterophilic datasets in three different sizes. Comparative experiments show that CAT can improve the node classification accuracy of all base GAT models. Ablation experiments and visualization further validate the enhancement of discrimination ability brought by CAT. The source code is available at //github.com/GeoX-Lab/CAT.

相關內容

圖注意力網絡(Graph Attention Network,GAT),它通過注意力機制(Attention Mechanism)來對鄰居節點做聚合操作,實現了對不同鄰居權重的自適應分配,從而大大提高了圖神經網絡模型的表達能力。

Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.

Scene Graph Generation (SGG) remains a challenging task due to its compositional property. Previous approaches improve prediction efficiency by learning in an end-to-end manner. However, these methods exhibit limited performance as they assume unidirectional conditioning between entities and predicates, leading to insufficient information interaction. To address this limitation, we propose a novel bidirectional conditioning factorization for SGG, introducing efficient interaction between entities and predicates. Specifically, we develop an end-to-end scene graph generation model, Bidirectional Conditioning Transformer (BCTR), to implement our factorization. BCTR consists of two key modules. First, the Bidirectional Conditioning Generator (BCG) facilitates multi-stage interactive feature augmentation between entities and predicates, enabling mutual benefits between the two predictions. Second, Random Feature Alignment (RFA) regularizes the feature space by distilling multi-modal knowledge from pre-trained models, enhancing BCTR's ability on tailed categories without relying on statistical priors. We conduct a series of experiments on Visual Genome and Open Image V6, demonstrating that BCTR achieves state-of-the-art performance on both benchmarks. The code will be available upon acceptance of the paper.

Audio deepfake detection (ADD) is crucial to combat the misuse of speech synthesized from generative AI models. Existing ADD models suffer from generalization issues, with a large performance discrepancy between in-domain and out-of-domain data. Moreover, the black-box nature of existing models limits their use in real-world scenarios, where explanations are required for model decisions. To alleviate these issues, we introduce a new ADD model that explicitly uses the StyleLInguistics Mismatch (SLIM) in fake speech to separate them from real speech. SLIM first employs self-supervised pretraining on only real samples to learn the style-linguistics dependency in the real class. The learned features are then used in complement with standard pretrained acoustic features (e.g., Wav2vec) to learn a classifier on the real and fake classes. When the feature encoders are frozen, SLIM outperforms benchmark methods on out-of-domain datasets while achieving competitive results on in-domain data. The features learned by SLIM allow us to quantify the (mis)match between style and linguistic content in a sample, hence facilitating an explanation of the model decision.

Image captioning (IC) systems, such as Microsoft Azure Cognitive Service, translate image content into descriptive language but can generate inaccuracies leading to misinterpretations. Advanced testing techniques like MetaIC and ROME aim to address these issues but face significant challenges. These methods require intensive manual labor for detailed annotations and often produce unrealistic images, either by adding unrelated objects or failing to remove existing ones. Additionally, they generate limited test suites, with MetaIC restricted to inserting specific objects and ROME limited to a narrow range of variations. We introduce SPOLRE, a novel automated tool for semantic-preserving object layout reconstruction in IC system testing. SPOLRE leverages four transformation techniques to modify object layouts without altering the image's semantics. This automated approach eliminates the need for manual annotations and creates realistic, varied test suites. Our tests show that over 75% of survey respondents find SPOLRE-generated images more realistic than those from state-of-the-art methods. SPOLRE excels in identifying caption errors, detecting 31,544 incorrect captions across seven IC systems with an average precision of 91.62%, surpassing other methods which average 85.65% accuracy and identify 17,160 incorrect captions. Notably, SPOLRE identified 6,236 unique issues within Azure, demonstrating its effectiveness against one of the most advanced IC systems.

Recent advancements have significantly enhanced the capabilities of Multimodal Large Language Models (MLLMs) in generating and understanding image-to-text content. Despite these successes, progress is predominantly limited to English due to the scarcity of high quality multimodal resources in other languages. This limitation impedes the development of competitive models in languages such as Arabic. To alleviate this situation, we introduce an efficient Arabic multimodal assistant, dubbed Dallah, that utilizes an advanced language model based on LLaMA-2 to facilitate multimodal interactions. Dallah demonstrates state-of-the-art performance in Arabic MLLMs. Through fine-tuning six Arabic dialects, Dallah showcases its capability to handle complex dialectal interactions incorporating both textual and visual elements. The model excels in two benchmark tests: one evaluating its performance on Modern Standard Arabic (MSA) and another specifically designed to assess dialectal responses. Beyond its robust performance in multimodal interaction tasks, Dallah has the potential to pave the way for further development of dialect-aware Arabic MLLMs.

While there has been significant development of models for Plain Language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation metrics is unclear due to the unique transformations involved (e.g., adding background explanations, removing jargon). To address these questions, our study introduces a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for PLS. We identify four PLS criteria from previous work -- informativeness, simplification, coherence, and faithfulness -- and define a set of perturbations corresponding to these criteria that sensitive metrics should be able to detect. We apply these perturbations to extractive hypotheses for two PLS datasets to form our testbed. Using APPLS, we assess performance of 14 metrics, including automated scores, lexical features, and LLM prompt-based evaluations. Our analysis reveals that while some current metrics show sensitivity to specific criteria, no single method captures all four criteria simultaneously. We therefore recommend a suite of automated metrics be used to capture PLS quality along all relevant criteria. This work contributes the first meta-evaluation testbed for PLS and a comprehensive evaluation of existing metrics. APPLS and our evaluation code is available at //github.com/LinguisticAnomalies/APPLS.

Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, results in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. Based on the GenCeption method, we establish the MMECeption benchmark for evaluating Vision LLMs (VLLMs), and compare performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption's effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lack behind human performance and struggle especially with text-intensive tasks.

In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.

We propose FoundPose, a model-based method for 6D pose estimation of unseen objects from a single RGB image. The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training. In contrast, existing methods typically pre-train on large-scale, task-specific datasets in order to generalize to new objects and to bridge the image-to-model domain gap. We demonstrate that such generalization capabilities can be observed in a recent vision foundation model trained in a self-supervised manner. Specifically, our method estimates the object pose from image-to-model 2D-3D correspondences, which are established by matching patch descriptors from the recent DINOv2 model between the image and pre-rendered object templates. We find that reliable correspondences can be established by kNN matching of patch descriptors from an intermediate DINOv2 layer. Such descriptors carry stronger positional information than descriptors from the last layer, and we show their importance when semantic information is ambiguous due to object symmetries or a lack of texture. To avoid establishing correspondences against all object templates, we develop an efficient template retrieval approach that integrates the patch descriptors into the bag-of-words representation and can promptly propose a handful of similarly looking templates. Additionally, we apply featuremetric alignment to compensate for discrepancies in the 2D-3D correspondences caused by coarse patch sampling. The resulting method noticeably outperforms existing RGB methods for refinement-free pose estimation on the standard BOP benchmark with seven diverse datasets and can be seamlessly combined with an existing render-and-compare refinement method to achieve RGB-only state-of-the-art results. Project page: evinpinar.github.io/foundpose.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司