Recently the trend of companies switching from microservice back to monolith has increased, leading to intense debate in the industry. We conduct a multivocal literature review, to investigate reasons for the phenomenon and key aspects to pay attention to during the switching back and analyze the opinions of other practitioners. The results pave the way for further research and provide guidance for industrial companies switching from microservice back to monolith.
The emergence of new services and applications in emerging wireless networks (e.g., beyond 5G and 6G) has shown a growing demand for the usage of artificial intelligence (AI) in the Internet of Things (IoT). However, the proliferation of massive IoT connections and the availability of computing resources distributed across future IoT systems have strongly demanded the development of distributed AI for better IoT services and applications. Therefore, existing AI-enabled IoT systems can be enhanced by implementing distributed machine learning (aka distributed learning) approaches. This work aims to provide a comprehensive survey on distributed learning for IoT services and applications in emerging networks. In particular, we first provide a background of machine learning and present a preliminary to typical distributed learning approaches, such as federated learning, multi-agent reinforcement learning, and distributed inference. Then, we provide an extensive review of distributed learning for critical IoT services (e.g., data sharing and computation offloading, localization, mobile crowdsensing, and security and privacy) and IoT applications (e.g., smart healthcare, smart grid, autonomous vehicle, aerial IoT networks, and smart industry). From the reviewed literature, we also present critical challenges of distributed learning for IoT and propose several promising solutions and research directions in this emerging area.
Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU performance will evolve, and conclude an average boost of 9.56x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.
We study a sender-receiver model where the receiver can commit to a decision rule before the sender determines the information policy. The decision rule can depend on the signal structure and the signal realization that the sender adopts. This framework captures applications where a decision-maker (the receiver) solicit advice from an interested party (sender). In these applications, the receiver faces uncertainty regarding the sender's preferences and the set of feasible signal structures. Consequently, we adopt a unified robust analysis framework that includes max-min utility, min-max regret, and min-max approximation ratio as special cases. We show that it is optimal for the receiver to sacrifice ex-post optimality to perfectly align the sender's incentive. The optimal decision rule is a quota rule, i.e., the decision rule maximizes the receiver's ex-ante payoff subject to the constraint that the marginal distribution over actions adheres to a consistent quota, regardless of the sender's chosen signal structure.
Empirical research on perception and cognition has laid the foundation for visualization design, often yielding useful design guidelines for practitioners. However, it remains uncertain how well practitioners stay informed about the latest findings in visualization research. In this paper, we employed a mixed-method approach to explore the knowledge gap between visualization research and real-world design guidelines. We initially collected existing design guidelines from various sources and empirical studies from major publishing venues, analyzing their alignment and uncovering missing links and contradictory knowledge. Subsequently, we conducted surveys and interviews with practitioners and researchers to gain further insights into their experiences and attitudes towards design guidelines and empirical studies, and their views on the knowledge gap between research and practice. Our findings highlight the similarities and differences in their perspectives and propose strategies to bridge the divide in visualization design knowledge.
As the complexity and scale of modern computer networks continue to increase, there has emerged an urgent need for precise traffic analysis, which plays a pivotal role in cutting-edge wireless connectivity technologies. This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system. We introduce a novel data-driven approach that excels in identifying various network service types in real-time, by analyzing patterns within the network traffic. Our method organizes similar kinds of network traffic into distinct categories, referred to as network services, based on latency requirement. Furthermore, it decomposes the network traffic stream into multiple, smaller traffic flows, with each flow uniquely carrying a specific service. Our ML models are trained on a dataset comprised of labeled examples representing different network service types collected on various Wi-Fi network conditions. Upon evaluation, our system demonstrates a remarkable accuracy in distinguishing the network services. These results emphasize the substantial promise of integrating Artificial Intelligence in wireless technologies. Such an approach encourages more efficient energy consumption, enhances Quality of Service assurance, and optimizes the allocation of network resources, thus laying a solid groundwork for the development of advanced intelligent networks.
In the field of robotics, robot teleoperation for remote or hazardous environments has become increasingly vital. A major challenge is the lag between command and action, negatively affecting operator awareness, performance, and mental strain. Even with advanced technology, mitigating these delays, especially in long-distance operations, remains challenging. Current solutions largely focus on machine-based adjustments. Yet, there's a gap in using human perceptions to improve the teleoperation experience. This paper presents a unique method of sensory manipulation to help humans adapt to such delays. Drawing from motor learning principles, it suggests that modifying sensory stimuli can lessen the perception of these delays. Instead of introducing new skills, the approach uses existing motor coordination knowledge. The aim is to minimize the need for extensive training or complex automation. A study with 41 participants explored the effects of altered haptic cues in delayed teleoperations. These cues were sourced from advanced physics engines and robot sensors. Results highlighted benefits like reduced task time and improved perceptions of visual delays. Real-time haptic feedback significantly contributed to reduced mental strain and increased confidence. This research emphasizes human adaptation as a key element in robot teleoperation, advocating for improved teleoperation efficiency via swift human adaptation, rather than solely optimizing robots for delay adjustment.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.