亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A simple third order compact finite element method is proposed for one-dimensional Sturm-Liouville boundary value problems. The key idea is based on the interpolation error estimate, which can be related to the source term. Thus, a simple posterior error analysis or a modified basis functions based on original piecewise linear basis function will lead to a third order accurate solution in the $L^2$ norm, and second order in the $H^1$ or the energy norm. Numerical examples have confirmed our analysis.

相關內容

Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and unstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.

Optimal $k$-thresholding algorithms are a class of sparse signal recovery algorithms that overcome the shortcomings of traditional hard thresholding algorithms caused by the oscillation of the residual function. In this paper, we provide a novel theoretical analysis for the data-time tradeoffs of optimal $k$-thresholding algorithms. Both the analysis and numerical results demonstrate that when the number of measurements is small, the algorithms cannot converge; when the number of measurements is suitably large, the number of measurements required for successful recovery has a negative correlation with the number of iterations and the algorithms can achieve linear convergence. Furthermore, the theory presents that the transition point of the number of measurements is on the order of $k \log({en}/{k})$, where $n$ is the dimension of the target signal.

The purpose of this work is to study spectral methods to approximate the eigenvalues of nonlocal integral operators. Indeed, even if the spatial domain is an interval, it is very challenging to obtain closed analytical expressions for the eigenpairs of peridynamic operators. Our approach is based on the weak formulation of eigenvalue problem and we consider as orthogonal basis to compute the eigenvalues a set of Fourier trigonometric or Chebyshev polynomials. We show the order of convergence for eigenvalues and eigenfunctions in $L^2$-norm, and finally, we perform some numerical simulations to compare the two proposed methods.

This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.

This work deals with a number of questions relative to the discrete and continuous adjoint fields associated with the compressible Euler equations and classical aerodynamic functions. The consistency of the discrete adjoint equations with the corresponding continuous adjoint partial differential equation is one of them. It is has been established or at least discussed only for a handful of numerical schemes and a contribution of this article is to give the adjoint consistency conditions for the 2D Jameson-Schmidt-Turkel scheme in cell-centred finite-volume formulation. The consistency issue is also studied here from a new heuristic point of view by discretizing the continuous adjoint equation for the discrete flow and adjoint fields. Both points of view prove to provide useful information. Besides, it has been often noted that discrete or continuous inviscid lift and drag adjoint exhibit numerical divergence close to the wall and stagnation streamline for a wide range of subsonic and transonic flow conditions. This is analyzed here using the physical source term perturbation method introduced in reference [Giles and Pierce, AIAA Paper 97-1850, 1997]. With this point of view, the fourth physical source term of appears to be the only one responsible for this behavior. It is also demonstrated that the numerical divergence of the adjoint variables corresponds to the response of the flow to the convected increment of stagnation pressure and diminution of entropy created at the source and the resulting change in lift and drag.

We present a new enriched Galerkin (EG) scheme for the Stokes equations based on piecewise linear elements for the velocity unknowns and piecewise constant elements for the pressure. The proposed EG method augments the conforming piecewise linear space for velocity by adding an additional degree of freedom which corresponds to one discontinuous linear basis function per element. Thus, the total number of degrees of freedom is significantly reduced in comparison with standard conforming, non-conforming, and discontinuous Galerkin schemes for the Stokes equation. We show the well-posedness of the new EG approach and prove that the scheme converges optimally. For the solution of the resulting large-scale indefinite linear systems we propose robust block preconditioners, yielding scalable results independent of the discretization and physical parameters. Numerical results confirm the convergence rates of the discretization and also the robustness of the linear solvers for a variety of test problems.

We introduce tools from numerical analysis and high dimensional probability for precision control and complexity analysis of subdivision-based algorithms in computational geometry. We combine these tools with the continuous amortization framework from exact computation. We use these tools on a well-known example from the subdivision family: the adaptive subdivision algorithm due to Plantinga and Vegter. The only existing complexity estimate on this rather fast algorithm was an exponential worst-case upper bound for its interval arithmetic version. We go beyond the worst-case by considering both average and smoothed analysis, and prove polynomial time complexity estimates for both interval arithmetic and finite-precision versions of the Plantinga-Vegter algorithm.

We extend the DeTurck trick from the classical isotropic curve shortening flow to the anisotropic setting. Here the anisotropic energy density is allowed to depend on space, which allows an interpretation in the context of Finsler metrics, giving rise to e.g.\ geodesic curvature flow in Riemannian manifolds. Assuming that the density is strictly convex and smooth, we introduce a novel weak formulation for anisotropic curve shortening flow. We then derive an optimal $H^1$--error bound for a continuous-in-time semidiscrete finite element approximation that uses piecewise linear elements. In addition, we consider some fully practical fully discrete schemes and prove their unconditional stability. Finally, we present several numerical simulations, including some convergence experiments that confirm the derived error bound, as well as applications to crystalline curvature flow and geodesic curvature flow.

Boussinesq type equations have been widely studied to model the surface water wave. In this paper, we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system, BBM-BBM system, Bona-Smith system etc. We propose local discontinuous Galerkin (LDG) methods, with carefully chosen numerical fluxes, to numerically solve this abcd Boussinesq system. The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a, b, c, d. Numerical experiments are shown to test the convergence rates, and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.

We relate the condition numbers of computing three decompositions of symmetric tensors: the canonical polyadic decomposition, the Waring decomposition, and a Tucker-compressed Waring decomposition. Based on this relation we can speed up the computation of these condition numbers by orders of magnitude

北京阿比特科技有限公司