亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a model of social learning from reviews where customers are computationally limited and make purchases based on reading only the first few reviews displayed by the platform. Under this bounded rationality, we establish that the review ordering policy can have a significant impact. In particular, the popular Newest First ordering induces a negative review to persist as the most recent review longer than a positive review. This phenomenon, which we term the Cost of Newest First, can make the long-term revenue unboundedly lower than a counterpart where reviews are exogenously drawn for each customer. We show that the impact of the Cost of Newest First can be mitigated under dynamic pricing, which allows the price to depend on the set of displayed reviews. Under the optimal dynamic pricing policy, the revenue loss is at most a factor of 2. On the way, we identify a structural property for this optimal dynamic pricing: the prices should ensure that the probability of a purchase is always the same, regardless of the state of reviews. We also study an extension of the model where customers put more weight on more recent reviews (and discount older reviews based on their time of posting), and we show that Newest First is still not the optimal ordering policy if customers discount slowly. Lastly, we corroborate our theoretical findings using a real-world review dataset. We find that the average rating of the first page of reviews is statistically significantly smaller than the overall average rating, which is in line with our theoretical results.

相關內容

Offline imitation learning enables learning a policy solely from a set of expert demonstrations, without any environment interaction. To alleviate the issue of distribution shift arising due to the small amount of expert data, recent works incorporate large numbers of auxiliary demonstrations alongside the expert data. However, the performance of these approaches rely on assumptions about the quality and composition of the auxiliary data. However, they are rarely successful when those assumptions do not hold. To address this limitation, we propose Robust Offline Imitation from Diverse Auxiliary Data (ROIDA). ROIDA first identifies high-quality transitions from the entire auxiliary dataset using a learned reward function. These high-reward samples are combined with the expert demonstrations for weighted behavioral cloning. For lower-quality samples, ROIDA applies temporal difference learning to steer the policy towards high-reward states, improving long-term returns. This two-pronged approach enables our framework to effectively leverage both high and low-quality data without any assumptions. Extensive experiments validate that ROIDA achieves robust and consistent performance across multiple auxiliary datasets with diverse ratios of expert and non-expert demonstrations. ROIDA effectively leverages unlabeled auxiliary data, outperforming prior methods reliant on specific data assumptions.

Recent studies have shown that distributed machine learning is vulnerable to gradient inversion attacks, where private training data can be reconstructed by analyzing the gradients of the models shared in training. Previous attacks established that such reconstructions are possible using gradients from all parameters in the entire models. However, we hypothesize that most of the involved modules, or even their sub-modules, are at risk of training data leakage, and we validate such vulnerabilities in various intermediate layers of language models. Our extensive experiments reveal that gradients from a single Transformer layer, or even a single linear component with 0.54% parameters, are susceptible to training data leakage. Additionally, we show that applying differential privacy on gradients during training offers limited protection against the novel vulnerability of data disclosure.

Learning general-purpose models from diverse datasets has achieved great success in machine learning. In robotics, however, existing methods in multi-task learning are typically constrained to a single robot and workspace, while recent work such as RT-X requires a non-trivial action normalization procedure to manually bridge the gap between different action spaces in diverse environments. In this paper, we propose the visual kinematics chain as a precise and universal representation of quasi-static actions for robot learning over diverse environments, which requires no manual adjustment since the visual kinematic chains can be automatically obtained from the robot's model and camera parameters. We propose the Visual Kinematics Transformer (VKT), a convolution-free architecture that supports an arbitrary number of camera viewpoints, and that is trained with a single objective of forecasting kinematic structures through optimal point-set matching. We demonstrate the superior performance of VKT over BC transformers as a general agent on Calvin, RLBench, Open-X, and real robot manipulation tasks. Video demonstrations can be found at //mlzxy.github.io/visual-kinetic-chain.

Recent years, researchers focused on personalized federated learning (pFL) to address the inconsistent requirements of clients causing by data heterogeneity in federated learning (FL). However, existing pFL methods typically assume that local data distribution remains unchanged during FL training, the changing data distribution in actual heterogeneous data scenarios can affect model convergence rate and reduce model performance. In this paper, we focus on solving the pFL problem under the situation where data flows through each client like a flowing stream which called Flowing Data Heterogeneity under Restricted Storage, and shift the training goal to the comprehensive performance of the model throughout the FL training process. Therefore, based on the idea of category decoupling, we design a local data distribution reconstruction scheme and a related generator architecture to reduce the error of the controllable replayed data distribution, then propose our pFL framework, pFedGRP, to achieve knowledge transfer and personalized aggregation. Comprehensive experiments on five datasets with multiple settings show the superiority of pFedGRP over eight baseline methods.

The expanding complexity and dimensionality in the search space can adversely affect inductive learning in fuzzy rule classifiers, thus impacting the scalability and accuracy of fuzzy systems. This research specifically addresses the challenge of diabetic classification by employing the Brain Storm Optimization (BSO) algorithm to propose a novel fuzzy system that redefines rule generation for this context. An exponential model is integrated into the standard BSO algorithm to enhance rule derivation, tailored specifically for diabetes-related data. The innovative fuzzy system is then applied to classification tasks involving diabetic datasets, demonstrating a substantial improvement in classification accuracy, as evidenced by our experiments.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

北京阿比特科技有限公司