Most works studying representation learning focus only on classification and neglect regression. Yet, the learning objectives and therefore the representation topologies of the two tasks are fundamentally different: classification targets class separation, leading to disconnected representations, whereas regression requires ordinality with respect to the target, leading to continuous representations. We thus wonder how the effectiveness of a regression representation is influenced by its topology, with evaluation based on the Information Bottleneck (IB) principle. The IB principle is an important framework that provides principles for learning effectiveness representations. We establish two connections between it and the topology of regression representations. The first connection reveals that a lower intrinsic dimension of the feature space implies a reduced complexity of the representation Z. This complexity can be quantified as the conditional entropy of Z on the target space Y and serves as an upper bound on the generalization error. The second connection suggests learning a feature space that is topologically similar to the target space will better align with the IB principle. Based on these two connections, we introduce PH-Reg, a regularizer specific to regression that matches the intrinsic dimension and topology of the feature space with the target space. Experiments on synthetic and real-world regression tasks demonstrate the benefits of PH-Reg.
We consider the task of learning individual-specific intensities of counting processes from a set of static variables and irregularly sampled time series. We introduce a novel modelization approach in which the intensity is the solution to a controlled differential equation. We first design a neural estimator by building on neural controlled differential equations. In a second time, we show that our model can be linearized in the signature space under sufficient regularity conditions, yielding a signature-based estimator which we call CoxSig. We provide theoretical learning guarantees for both estimators, before showcasing the performance of our models on a vast array of simulated and real-world datasets from finance, predictive maintenance and food supply chain management.
Although deep learning models have taken on commercial and political relevance, key aspects of their training and operation remain poorly understood. This has sparked interest in science of deep learning projects, many of which require large amounts of time, money, and electricity. But how much of this research really needs to occur at scale? In this paper, we introduce MNIST-1D: a minimalist, procedurally generated, low-memory, and low-compute alternative to classic deep learning benchmarks. Although the dimensionality of MNIST-1D is only 40 and its default training set size only 4000, MNIST-1D can be used to study inductive biases of different deep architectures, find lottery tickets, observe deep double descent, metalearn an activation function, and demonstrate guillotine regularization in self-supervised learning. All these experiments can be conducted on a GPU or often even on a CPU within minutes, allowing for fast prototyping, educational use cases, and cutting-edge research on a low budget.
Reward models (RM) play a critical role in aligning language models through the process of reinforcement learning from human feedback. RMs are trained to predict a score reflecting human preference, which requires significant time and cost for human annotation. Additionally, RMs tend to quickly overfit on superficial features in the training set, hindering their generalization performance on unseen distributions. We propose a novel approach using synthetic natural language critiques generated by large language models to provide additional feedback, evaluating aspects such as instruction following, correctness, and style. This offers richer signals and more robust features for RMs to assess and score on. We demonstrate that high-quality critiques improve the performance and data efficiency of RMs initialized from different pretrained models. Conversely, we also show that low-quality critiques negatively impact performance. Furthermore, incorporating critiques enhances the interpretability and robustness of RM training.
In traditional federated learning, a single global model cannot perform equally well for all clients. Therefore, the need to achieve the client-level fairness in federated system has been emphasized, which can be realized by modifying the static aggregation scheme for updating the global model to an adaptive one, in response to the local signals of the participating clients. Our work reveals that existing fairness-aware aggregation strategies can be unified into an online convex optimization framework, in other words, a central server's sequential decision making process. To enhance the decision making capability, we propose simple and intuitive improvements for suboptimal designs within existing methods, presenting AAggFF. Considering practical requirements, we further subdivide our method tailored for the cross-device and the cross-silo settings, respectively. Theoretical analyses guarantee sublinear regret upper bounds for both settings: $\mathcal{O}(\sqrt{T \log{K}})$ for the cross-device setting, and $\mathcal{O}(K \log{T})$ for the cross-silo setting, with $K$ clients and $T$ federation rounds. Extensive experiments demonstrate that the federated system equipped with AAggFF achieves better degree of client-level fairness than existing methods in both practical settings. Code is available at //github.com/vaseline555/AAggFF
In conventional supervised learning, a training dataset is given with ground-truth labels from a known label set, and the learned model will classify unseen instances to known labels. This paper studies a new problem setting in which there are unknown classes in the training data misperceived as other labels, and thus their existence appears unknown from the given supervision. We attribute the unknown unknowns to the fact that the training dataset is badly advised by the incompletely perceived label space due to the insufficient feature information. To this end, we propose the exploratory machine learning, which examines and investigates training data by actively augmenting the feature space to discover potentially hidden classes. Our method consists of three ingredients including rejection model, feature exploration, and model cascade. We provide theoretical analysis to justify its superiority, and validate the effectiveness on both synthetic and real datasets.
Activation functions are core components of all deep learning architectures. Currently, the most popular activation functions are smooth ReLU variants like GELU and SiLU. These are self-gated activation functions where the range of the gating function is between zero and one. In this paper, we explore the viability of using arctan as a gating mechanism. A self-gated activation function that uses arctan as its gating function has a monotonically increasing first derivative. To make this activation function competitive, it is necessary to introduce a trainable parameter for every MLP block to expand the range of the gating function beyond zero and one. We find that this technique also improves existing self-gated activation functions. We conduct an empirical evaluation of Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) and show that they outperform existing activation functions within a transformer architecture. Additionally, expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU).
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.