亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semantic segmentation is a fundamental task in visual scene understanding. We focus on the supervised setting, where ground-truth semantic annotations are available. Based on knowledge about the high regularity of real-world scenes, we propose a method for improving class predictions by learning to selectively exploit information from neighboring pixels. In particular, our method is based on the prior that for each pixel, there is a seed pixel in its close neighborhood sharing the same prediction with the former. Motivated by this prior, we design a novel two-head network, named Offset Vector Network (OVeNet), which generates both standard semantic predictions and a dense 2D offset vector field indicating the offset from each pixel to the respective seed pixel, which is used to compute an alternative, seed-based semantic prediction. The two predictions are adaptively fused at each pixel using a learnt dense confidence map for the predicted offset vector field. We supervise offset vectors indirectly via optimizing the seed-based prediction and via a novel loss on the confidence map. Compared to the baseline state-of-the-art architectures HRNet and HRNet+OCR on which OVeNet is built, the latter achieves significant performance gains on three prominent benchmarks for semantic segmentation, namely Cityscapes, ACDC and ADE20K. Code is available at //github.com/stamatisalex/OVeNet

相關內容

Spatiotemporal prediction aims to generate future sequences by paradigms learned from historical contexts. It is essential in numerous domains, such as traffic flow prediction and weather forecasting. Recently, research in this field has been predominantly driven by deep neural networks based on autoencoder architectures. However, existing methods commonly adopt autoencoder architectures with identical receptive field sizes. To address this issue, we propose an Asymmetric Receptive Field Autoencoder (ARFA) model, which introduces corresponding sizes of receptive field modules tailored to the distinct functionalities of the encoder and decoder. In the encoder, we present a large kernel module for global spatiotemporal feature extraction. In the decoder, we develop a small kernel module for local spatiotemporal information reconstruction. Experimental results demonstrate that ARFA consistently achieves state-of-the-art performance on popular datasets. Additionally, we construct the RainBench, a large-scale radar echo dataset for precipitation prediction, to address the scarcity of meteorological data in the domain.

Causal effect estimation from observational data is a central problem in causal inference. Methods based on potential outcomes framework solve this problem by exploiting inductive biases and heuristics from causal inference. Each of these methods addresses a specific aspect of causal effect estimation, such as controlling propensity score, enforcing randomization, etc., by designing neural network (NN) architectures and regularizers. In this paper, we propose an adaptive method called Neurosymbolic Causal Effect Estimator (NESTER), a generalized method for causal effect estimation. NESTER integrates the ideas used in existing methods based on multi-head NNs for causal effect estimation into one framework. We design a Domain Specific Language (DSL) tailored for causal effect estimation based on causal inductive biases used in literature. We conduct a theoretical analysis to investigate NESTER's efficacy in estimating causal effects. Our comprehensive empirical results show that NESTER performs better than state-of-the-art methods on benchmark datasets.

The multilevel heuristic is the dominant strategy for high-quality sequential and parallel graph partitioning. Partition refinement is a key step of multilevel graph partitioning. In this work, we present Jet, a new parallel algorithm for partition refinement specifically designed for Graphics Processing Units (GPUs). We combine Jet with GPU-aware coarsening to develop a $k$-way graph partitioner, the Jet partitioner. The new partitioner achieves superior quality compared to state-of-the-art shared memory partitioners on a large collection of test graphs.

Neuron labeling is an approach to visualize the behaviour and respond of a certain neuron to a certain pattern that activates the neuron. Neuron labeling extract information about the features captured by certain neurons in a deep neural network, one of which uses the encoder-decoder image captioning approach. The encoder used can be a pretrained CNN-based model and the decoder is an RNN-based model for text generation. Previous work, namely MILAN (Mutual Information-guided Linguistic Annotation of Neuron), has tried to visualize the neuron behaviour using modified Show, Attend, and Tell (SAT) model in the encoder, and LSTM added with Bahdanau attention in the decoder. MILAN can show great result on short sequence neuron captioning, but it does not show great result on long sequence neuron captioning, so in this work, we would like to improve the performance of MILAN even more by utilizing different kind of attention mechanism and additionally adding several attention result into one, in order to combine all the advantages from several attention mechanism. Using our compound dataset, we obtained higher BLEU and F1-Score on our proposed model, achieving 17.742 and 0.4811 respectively. At some point where the model converges at the peak, our model obtained BLEU of 21.2262 and BERTScore F1-Score of 0.4870.

Recently, Dynamic Vision Sensors (DVSs) sparked a lot of interest due to their inherent advantages over conventional RGB cameras. These advantages include a low latency, a high dynamic range and a low energy consumption. Nevertheless, the processing of DVS data using Deep Learning (DL) methods remains a challenge, particularly since the availability of event training data is still limited. This leads to a need for event data augmentation techniques in order to improve accuracy as well as to avoid over-fitting on the training data. Another challenge especially in real world automotive applications is occlusion, meaning one object is hindering the view onto the object behind it. In this paper, we present a novel event data augmentation approach, which addresses this problem by introducing synthetic events for randomly moving objects in a scene. We test our method on multiple DVS classification datasets, resulting in an relative improvement of up to 6.5 % in top1-accuracy. Moreover, we apply our augmentation technique on the real world Gen1 Automotive Event Dataset for object detection, where we especially improve the detection of pedestrians by up to 5 %.

Bayesian optimization is a principled optimization strategy for a black-box objective function. It shows its effectiveness in a wide variety of real-world applications such as scientific discovery and experimental design. In general, the performance of Bayesian optimization is assessed by regret-based metrics such as instantaneous, simple, and cumulative regrets. These metrics only rely on function evaluations, so that they do not consider geometric relationships between query points and global solutions, or query points themselves. Notably, they cannot discriminate if multiple global solutions are successfully found. Moreover, they do not evaluate Bayesian optimization's abilities to exploit and explore a search space given. To tackle these issues, we propose four new geometric metrics, i.e., precision, recall, average degree, and average distance. These metrics allow us to compare Bayesian optimization algorithms considering the geometry of both query points and global optima, or query points. However, they are accompanied by an extra parameter, which needs to be carefully determined. We therefore devise the parameter-free forms of the respective metrics by integrating out the additional parameter. Finally, we empirically validate that our proposed metrics can provide more convincing interpretation and understanding of Bayesian optimization algorithms from distinct perspectives, compared to the conventional metrics.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司