Recognizing the pivotal role of EEG emotion recognition in the development of affective Brain-Computer Interfaces (aBCIs), considerable research efforts have been dedicated to this field. While prior methods have demonstrated success in intra-subject EEG emotion recognition, a critical challenge persists in addressing the style mismatch between EEG signals from the source domain (training data) and the target domain (test data). To tackle the significant inter-domain differences in cross-dataset EEG emotion recognition, this paper introduces an innovative solution known as the Emotional EEG Style Transfer Network (E$^2$STN). The primary objective of this network is to effectively capture content information from the source domain and the style characteristics from the target domain, enabling the reconstruction of stylized EEG emotion representations. These representations prove highly beneficial in enhancing cross-dataset discriminative prediction. Concretely, E$^2$STN consists of three key modules\textemdash transfer module, transfer evaluation module, and discriminative prediction module\textemdash which address the domain style transfer, transfer quality evaluation, and discriminative prediction, respectively. Extensive experiments demonstrate that E$^2$STN achieves state-of-the-art performance in cross-dataset EEG emotion recognition tasks.
This study explores the limitations of traditional Cybersecurity Awareness and Training (CSAT) programs and proposes an innovative solution using Generative Pre-Trained Transformers (GPT) to address these shortcomings. Traditional approaches lack personalization and adaptability to individual learning styles. To overcome these challenges, the study integrates GPT models to deliver highly tailored and dynamic cybersecurity learning expe-riences. Leveraging natural language processing capabilities, the proposed approach personalizes training modules based on individual trainee pro-files, helping to ensure engagement and effectiveness. An experiment using a GPT model to provide a real-time and adaptive CSAT experience through generating customized training content. The findings have demonstrated a significant improvement over traditional programs, addressing issues of en-gagement, dynamicity, and relevance. GPT-powered CSAT programs offer a scalable and effective solution to enhance cybersecurity awareness, provid-ing personalized training content that better prepares individuals to miti-gate cybersecurity risks in their specific roles within the organization.
The progression to "Pervasive Augmented Reality" envisions easy access to multimodal information continuously. However, in many everyday scenarios, users are occupied physically, cognitively or socially. This may increase the friction to act upon the multimodal information that users encounter in the world. To reduce such friction, future interactive interfaces should intelligently provide quick access to digital actions based on users' context. To explore the range of possible digital actions, we conducted a diary study that required participants to capture and share the media that they intended to perform actions on (e.g., images or audio), along with their desired actions and other contextual information. Using this data, we generated a holistic design space of digital follow-up actions that could be performed in response to different types of multimodal sensory inputs. We then designed OmniActions, a pipeline powered by large language models (LLMs) that processes multimodal sensory inputs and predicts follow-up actions on the target information grounded in the derived design space. Using the empirical data collected in the diary study, we performed quantitative evaluations on three variations of LLM techniques (intent classification, in-context learning and finetuning) and identified the most effective technique for our task. Additionally, as an instantiation of the pipeline, we developed an interactive prototype and reported preliminary user feedback about how people perceive and react to the action predictions and its errors.
Planning safe trajectories in Autonomous Driving Systems (ADS) is a complex problem to solve in real-time. The main challenge to solve this problem arises from the various conditions and constraints imposed by road geometry, semantics and traffic rules, as well as the presence of dynamic agents. Recently, Model Predictive Path Integral (MPPI) has shown to be an effective framework for optimal motion planning and control in robot navigation in unstructured and highly uncertain environments. In this paper, we formulate the motion planning problem in ADS as a nonlinear stochastic dynamic optimization problem that can be solved using an MPPI strategy. The main technical contribution of this work is a method to handle obstacles within the MPPI formulation safely. In this method, obstacles are approximated by circles that can be easily integrated into the MPPI cost formulation while considering safety margins. The proposed MPPI framework has been efficiently implemented in our autonomous vehicle and experimentally validated using three different primitive scenarios. Experimental results show that generated trajectories are safe, feasible and perfectly achieve the planning objective. The video results as well as the open-source implementation are available at: //gitlab.uni.lu/360lab-public/mppi
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: //github.com/GigaAI-research/General-World-Models-Survey.
Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse anchored bias in the GPT-2 family, where they consistently favour the first choice 'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice 'A', we effectively mitigate the anchored bias. Our interventions not only correct the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs. Our code is available at //github.com/ruizheliUOA/Anchored_Bias_GPT2.
The Partitioning Min-Max Weighted Matching (PMMWM) problem, being a practical NP-hard problem, integrates the task of partitioning the vertices of a bipartite graph into disjoint sets of limited size with the classical Maximum-Weight Perfect Matching (MPWM) problem. Initially introduced in 2015, the state-of-the-art method for addressing PMMWM is the MP$_{\text{LS}}$. In this paper, we present a novel approach, the Fast Iterative Match-Partition Hybrid Genetic Algorithm (FIMP-HGA), for addressing PMMWM. Similar to MP$_{\text{LS}}$, FIMP-HGA divides the solving into match and partition stages, iteratively refining the solution. In the match stage, we propose the KM-M algorithm, which reduces matching complexity through incremental adjustments, significantly enhancing runtime efficiency. For the partition stage, we introduce a Hybrid Genetic Algorithm (HGA) incorporating an elite strategy and design a Greedy Partition Crossover (GPX) operator alongside a Multilevel Local Search (MLS) to optimize individuals in the population. Population initialization employs various methods, including the multi-way Karmarkar-Karp (KK) algorithm, ensuring both quality and diversity. At each iteration, the bipartite graph is adjusted based on the current solution, aiming for continuous improvement. To conduct comprehensive experiments, we develop a new instance generation method compatible with existing approaches, resulting in four benchmark groups. Extensive experiments evaluate various algorithm modules, accurately assessing each module's impact on improvement. Evaluation results on our benchmarks demonstrate that the proposed FIMP-HGA significantly enhances solution quality compared to MP$_{\text{LS}}$, meanwhile reducing runtime by 3 to 20 times.
In the last three decades, the Steered Response Power (SRP) method has been widely used for the task of Sound Source Localization (SSL), due to its satisfactory localization performance on moderately reverberant and noisy scenarios. Many works have analyzed and extended the original SRP method to reduce its computational cost, to allow it to locate multiple sources, or to improve its performance in adverse environments. In this work, we review over 200 papers on the SRP method and its variants, with emphasis on the SRP-PHAT method. We also present eXtensible-SRP, or X-SRP, a generalized and modularized version of the SRP algorithm which allows the reviewed extensions to be implemented. We provide a Python implementation of the algorithm which includes selected extensions from the literature.
As consumer Virtual Reality (VR) and Mixed Reality (MR) technologies gain momentum, there's a growing focus on the development of engagements with 3D virtual content. Unfortunately, traditional techniques for content creation, editing, and interaction within these virtual spaces are fraught with difficulties. They tend to be not only engineering-intensive but also require extensive expertise, which adds to the frustration and inefficiency in virtual object manipulation. Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction, offering a seamless and intuitive user experience. By developing a physical dynamics-aware interactive Gaussian Splatting in a Virtual Reality setting, and constructing a highly efficient two-level embedding strategy alongside deformable body simulations, VR-GS ensures real-time execution with highly realistic dynamic responses. The components of our Virtual Reality system are designed for high efficiency and effectiveness, starting from detailed scene reconstruction and object segmentation, advancing through multi-view image in-painting, and extending to interactive physics-based editing. The system also incorporates real-time deformation embedding and dynamic shadow casting, ensuring a comprehensive and engaging virtual experience.Our project page is available at: //yingjiang96.github.io/VR-GS/.
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.