We introduce a finite volume scheme to solve isotropic 3-wave kinetic equations. We test our numerical solution against theoretical results concerning the long time behavior of the energy and observe that our solutions verify the energy cascade phenomenon. To our knowledge, this is the first numerical scheme that can capture the long time asymptotic behavior of solutions to isotropic 3-wave kinetic equations, where the energy cascade can be observed. Our numerical energy cascade rates are in good agreement with previously obtained theoretical results. The finite volume scheme given here relies on a new identity, allowing one to reduce the number of terms needed in the collision operators.
Kernel methods are learning algorithms that enjoy solid theoretical foundations while suffering from important computational limitations. Sketching, that consists in looking for solutions among a subspace of reduced dimension, is a widely studied approach to alleviate this numerical burden. However, fast sketching strategies, such as non-adaptive subsampling, significantly degrade the guarantees of the algorithms, while theoretically-accurate sketches, such as the Gaussian one, turn out to remain relatively slow in practice. In this paper, we introduce the $p$-sparsified sketches, that combine the benefits from both approaches to achieve a good tradeoff between statistical accuracy and computational efficiency. To support our method, we derive excess risk bounds for both single and multiple output problems, with generic Lipschitz losses, providing new guarantees for a wide range of applications, from robust regression to multiple quantile regression. We also provide empirical evidences of the superiority of our sketches over recent SOTA approaches.
The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretization of the $\mathbf{B}$-$\mathbf{E}$ formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. We extend our method to fully implicit methods for time-dependent problems which we solve robustly in both two and three dimensions. Our approach relies on specialized parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. We confirm the robustness of our solver by numerical experiments in which we consider fluid and magnetic Reynolds numbers and coupling numbers up to 10,000 for stationary problems and up to 100,000 for transient problems in two and three dimensions.
We study to what extent may stochastic gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit to training data. We consider the fundamental stochastic convex optimization framework, where (one pass, without-replacement) SGD is classically known to minimize the population risk at rate $O(1/\sqrt n)$, and prove that, surprisingly, there exist problem instances where the SGD solution exhibits both empirical risk and generalization gap of $\Omega(1)$. Consequently, it turns out that SGD is not algorithmically stable in any sense, and its generalization ability cannot be explained by uniform convergence or any other currently known generalization bound technique for that matter (other than that of its classical analysis). We then continue to analyze the closely related with-replacement SGD, for which we show that an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate. Finally, we interpret our main results in the context of without-replacement SGD for finite-sum convex optimization problems, and derive upper and lower bounds for the multi-epoch regime that significantly improve upon previously known results.
In this paper, a higher order finite difference scheme is proposed for Generalized Fractional Diffusion Equations (GFDEs). The fractional diffusion equation is considered in terms of the generalized fractional derivatives (GFDs) which uses the scale and weight functions in the definition. The GFD reduces to the Riemann-Liouville, Caputo derivatives and other fractional derivatives in a particular case. Due to importance of the scale and the weight functions in describing behaviour of real-life physical systems, we present the solutions of the GFDEs by considering various scale and weight functions. The convergence and stability analysis are also discussed for finite difference scheme (FDS) to validate the proposed method. We consider test examples for numerical simulation of FDS to justify the proposed numerical method.
The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints. Our eventual goal is to handle supplier problems in the most general distributional setting, where there is only black-box access to the underlying distribution. To that end, we follow a two-step approach. First, we develop algorithms for a restricted version of each problem, where all scenarios are explicitly provided; second, we employ a novel scenario-discarding variant of the standard Sample Average Approximation (SAA) method, which crucially exploits properties of the restricted-case algorithms. We note that the scenario-discarding modification to the SAA method is necessary in order to optimize over the radius.
Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate stochastic processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. In particular, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures proposed is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.
The accurate numerical solution of partial differential equations is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches.
High-dimensional parabolic partial integro-differential equations (PIDEs) appear in many applications in insurance and finance. Existing numerical methods suffer from the curse of dimensionality or provide solutions only for a given space-time point. This gave rise to a growing literature on deep learning based methods for solving partial differential equations; results for integro-differential equations on the other hand are scarce. In this paper we consider an extension of the deep splitting scheme due to arXiv:1907.03452 and arXiv:2006.01496v3 to PIDEs. Our main contribution is an analysis of the approximation error which yields convergence rates in terms of the number of neurons for shallow neural networks. Moreover we discuss several test case studies to show the viability of our approach.
Partial Differential Equations (PDEs) are ubiquitous in many disciplines of science and engineering and notoriously difficult to solve. In general, closed-form solutions of PDEs are unavailable and numerical approximation methods are computationally expensive. The parameters of PDEs are variable in many applications, such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In these applications, our goal is to solve parametric PDEs rather than one instance of them. Our proposed approach, called Meta-Auto-Decoder (MAD), treats solving parametric PDEs as a meta-learning problem and utilizes the Auto-Decoder structure in \cite{park2019deepsdf} to deal with different tasks/PDEs. Physics-informed losses induced from the PDE governing equations and boundary conditions is used as the training losses for different tasks. The goal of MAD is to learn a good model initialization that can generalize across different tasks, and eventually enables the unseen task to be learned faster. The inspiration of MAD comes from (conjectured) low-dimensional structure of parametric PDE solutions and we explain our approach from the perspective of manifold learning. Finally, we demonstrate the power of MAD though extensive numerical studies, including Burgers' equation, Laplace's equation and time-domain Maxwell's equations. MAD exhibits faster convergence speed without losing the accuracy compared with other deep learning methods.
Many important machine learning applications involve regularized nonconvex bi-level optimization. However, the existing gradient-based bi-level optimization algorithms cannot handle nonconvex or nonsmooth regularizers, and they suffer from a high computation complexity in nonconvex bi-level optimization. In this work, we study a proximal gradient-type algorithm that adopts the approximate implicit differentiation (AID) scheme for nonconvex bi-level optimization with possibly nonconvex and nonsmooth regularizers. In particular, the algorithm applies the Nesterov's momentum to accelerate the computation of the implicit gradient involved in AID. We provide a comprehensive analysis of the global convergence properties of this algorithm through identifying its intrinsic potential function. In particular, we formally establish the convergence of the model parameters to a critical point of the bi-level problem, and obtain an improved computation complexity $\mathcal{O}(\kappa^{3.5}\epsilon^{-2})$ over the state-of-the-art result. Moreover, we analyze the asymptotic convergence rates of this algorithm under a class of local nonconvex geometries characterized by a {\L}ojasiewicz-type gradient inequality. Experiment on hyper-parameter optimization demonstrates the effectiveness of our algorithm.