亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper compares statistical experiments in discounted problems, ranging from the simplest ones where the state is fixed and the flow of information exogenous to more complex ones, where the decision-maker controls the flow of information or the state changes over time.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Extensibility · 情景 · 絕對多數投票 · SimPLe ·
2024 年 7 月 7 日

May's Theorem [K. O. May, Econometrica 20 (1952) 680-684] characterizes majority voting on two alternatives as the unique preferential voting method satisfying several simple axioms. Here we show that by adding some desirable axioms to May's axioms, we can uniquely determine how to vote on three alternatives (setting aside tiebreaking). In particular, we add two axioms stating that the voting method should mitigate spoiler effects and avoid the so-called strong no show paradox. We prove a theorem stating that any preferential voting method satisfying our enlarged set of axioms, which includes some weak homogeneity and preservation axioms, must choose from among the Minimax winners in all three-alternative elections. When applied to more than three alternatives, our axioms also distinguish Minimax from other known voting methods that coincide with or refine Minimax for three alternatives.

In this paper, conditional stability estimates are derived for unique continuation and Cauchy problems associated to the Poisson equation in ultra-weak variational form. Numerical approximations are obtained as minima of regularized least squares functionals. The arising dual norms are replaced by discretized dual norms, which leads to a mixed formulation in terms of trial- and test-spaces. For stable pairs of such spaces, and a proper choice of the regularization parameter, the $L_2$-error on a subdomain in the obtained numerical approximation can be bounded by the best possible fractional power of the sum of the data error and the error of best approximation. Compared to the use of a standard variational formulation, the latter two errors are measured in weaker norms. To avoid the use of $C^1$-finite element test spaces, nonconforming finite element test spaces can be applied as well. They either lead to the qualitatively same error bound, or in a simplified version, to such an error bound modulo an additional data oscillation term. Numerical results illustrate our theoretical findings.

We present a wavenumber-explicit analysis of FEM-BEM coupling methods for time-harmonic Helmholtz problems proposed in arXiv:2004.03523 for conforming discretizations and in arXiv:2105.06173 for discontinuous Galerkin (DG) volume discretizations. We show that the conditions that $kh/p$ be sufficiently small and that $\log(k) / p$ be bounded imply quasi-optimality of both conforming and DG-method, where $k$ is the wavenumber, $h$ the mesh size, and $p$ the approximation order. The analysis relies on a $k$-explicit regularity theory for a three-field coupling formulation.

In a previous publication, we introduced an abstract logic via an abstract notion of quantifier. Drawing upon concepts from categorical logic, this abstract logic interprets formulas from context as subobjects in a specific category, e.g., Cartesian, regular, or coherent categories, Grothendieck, or elementary toposes. We proposed an entailment system formulated as a sequent calculus which we proved complete. Building on this foundation, our current work explores model theory within abstract logic. More precisely, we generalize one of the most important and powerful classical model theory methods, namely the ultraproduct method, and show its fundamental theorem, i.e., Los's theorem. The result is shown as independently as possible of a given quantifier.

Non-representative surveys are commonly used and widely available but suffer from selection bias that generally cannot be entirely eliminated using weighting techniques. Instead, we propose a Bayesian method to synthesize longitudinal representative unbiased surveys with non-representative biased surveys by estimating the degree of selection bias over time. We show using a simulation study that synthesizing biased and unbiased surveys together out-performs using the unbiased surveys alone, even if the selection bias may evolve in a complex manner over time. Using COVID-19 vaccination data, we are able to synthesize two large sample biased surveys with an unbiased survey to reduce uncertainty in now-casting and inference estimates while simultaneously retaining the empirical credible interval coverage. Ultimately, we are able to conceptually obtain the properties of a large sample unbiased survey if the assumed unbiased survey, used to anchor the estimates, is unbiased for all time-points.

Probabilistic forecasts comprehensively describe the uncertainty in the unknown future outcome, making them essential for decision making and risk management. While several methods have been introduced to evaluate probabilistic forecasts, existing evaluation techniques are ill-suited to the evaluation of tail properties of such forecasts. However, these tail properties are often of particular interest to forecast users due to the severe impacts caused by extreme outcomes. In this work, we introduce a general notion of tail calibration for probabilistic forecasts, which allows forecasters to assess the reliability of their predictions for extreme outcomes. We study the relationships between tail calibration and standard notions of forecast calibration, and discuss connections to peaks-over-threshold models in extreme value theory. Diagnostic tools are introduced and applied in a case study on European precipitation forecasts

Many environmental processes such as rainfall, wind or snowfall are inherently spatial and the modelling of extremes has to take into account that feature. In addition, environmental processes are often attached with an angle, e.g., wind speed and direction or extreme snowfall and time of occurrence in year. This article proposes a Bayesian hierarchical model with a conditional independence assumption that aims at modelling simultaneously spatial extremes and an angular component. The proposed model relies on the extreme value theory as well as recent developments for handling directional statistics over a continuous domain. Working within a Bayesian setting, a Gibbs sampler is introduced whose performances are analysed through a simulation study. The paper ends with an application on extreme wind speed in France. Results show that extreme wind events in France are mainly coming from West apart from the Mediterranean part of France and the Alps.

One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司