亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two lines of approaches are adopted for complex reasoning with LLMs. One line of work prompts LLMs with various reasoning structures, while the structural outputs can be naturally regarded as intermediate reasoning steps. Another line of work adopt LLM-free declarative solvers to do the reasoning task, rendering higher reasoning accuracy but lacking interpretability due to the black-box nature of the solvers. Aiming to resolve the trade-off between answer accuracy and interpretability, we present a simple extension to the latter line of work. Specifically, we showcase that the intermediate search logs generated by Prolog interpreters can be accessed and interpreted into human-readable reasoning proofs. As long as LLMs correctly translate problem descriptions into Prolog representations, the corresponding reasoning proofs are ensured to be causal and reliable. On two logical reasoning and one arithmetic reasoning datasets, our framework obtains significant improvements in terms of both answer accuracy and reasoning proof accuracy. Our code is released at //github.com/DAMO-NLP-SG/CaRing

相關內容

機器學習系統設(she)計系統評估標準

Code translation transforms programs from one programming language (PL) to another. Several rule-based transpilers have been designed to automate code translation between different pairs of PLs. However, the rules can become obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation of code translation using Large Language Models (LLMs). One key observation is that such techniques may work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects with dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source and test code, and employs multiple levels of validation to ensure the translation preserves the functionality of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to decompose the program into fragments and translates them in the reverse call order. We leveraged AlphaTrans to translate ten real-world open-source projects consisting of <836, 8575, 2719> classes, methods, and tests. AlphaTrans translated the entire repository of these projects consisting of 6899 source code fragments. 99.1% of the translated code fragments are syntactically correct, and AlphaTrans validates the translations' runtime behavior and functional correctness for 25.8%. On average, the integrated translation and validation take 36 hours to translate a project, showing its scalability in practice. For the syntactically or semantically incorrect translations, AlphaTrans generates a report including existing translation, stack trace, test errors, or assertion failures. We provided these artifacts to two developers to fix the translation bugs in four projects. They were able to fix the issues in 20.1 hours on average and achieve all passing tests.

This work solves an open problem regarding the rate of time-bounded Kolmogorov complexity and polynomial-time dimension, conditioned on a hardness assumption. Hitchcock and Vinodchandran (CCC 2004) show that the polynomial-time dimension of infinite sequences (denoted ${\mathrm{cdim}}_\mathrm{P}$) defined using betting algorithms called gales, is lower bounded by the asymptotic lower rate of polynomial-time Kolmogorov complexity (denoted $\mathcal{K}_\text{poly}$). Hitchcock and Vindochandran and Stull asked whether the converse relationship also holds. This question has thus far resisted resolution. The corresponding unbounded notions, namely, the constructive dimension and the asymptotic lower rate of unbounded Kolmogorov complexity are equal for every sequence. Analogous notions are equal even at finite-state level. In view of these results, it is reasonable to conjecture that the polynomial-time quantities are identical for every sequence and set of sequences. However, under a plausible assumption which underlies modern cryptography - namely the existence of one-way functions, we refute the conjecture thereby giving a negative answer to the open question posed by Hitchcock and Vinodchandran and Stull . We show the following, conditioned on the existence of one-way functions: There are sets $\mathcal{F}$ of infinite sequences whose polytime dimension strictly exceeds $\mathcal{K}_\text{poly}(\mathcal{F})$, that is ${\mathrm{cdim}}_\mathrm{P}(\mathcal{F}) > \mathcal{K}_\text{poly}(\mathcal{F})$. We establish a stronger version of this result, that there are individual sequences $X$ whose poly-time dimension strictly exceeds $\mathcal{K}_\text{poly}(X)$, that is ${\mathrm{cdim}}_\mathrm{P}(X) > \mathcal{K}_\text{poly}(X)$. Further, we show that the gap between these quantities can be made arbitrarily close to 1. We also establish similar bounds for strong poly-time dimension

This work presents a low-rank tensor model for multi-dimensional Markov chains. A common approach to simplify the dynamical behavior of a Markov chain is to impose low-rankness on the transition probability matrix. Inspired by the success of these matrix techniques, we present low-rank tensors for representing transition probabilities on multi-dimensional state spaces. Through tensor decomposition, we provide a connection between our method and classical probabilistic models. Moreover, our proposed model yields a parsimonious representation with fewer parameters than matrix-based approaches. Unlike these methods, which impose low-rankness uniformly across all states, our tensor method accounts for the multi-dimensionality of the state space. We also propose an optimization-based approach to estimate a Markov model as a low-rank tensor. Our optimization problem can be solved by the alternating direction method of multipliers (ADMM), which enjoys convergence to a stationary solution. We empirically demonstrate that our tensor model estimates Markov chains more efficiently than conventional techniques, requiring both fewer samples and parameters. We perform numerical simulations for both a synthetic low-rank Markov chain and a real-world example with New York City taxi data, showcasing the advantages of multi-dimensionality for modeling state spaces.

Chain of thought (CoT) is a reasoning framework that can enhance the performance of Large Language Models (LLMs) on complex inference tasks. In particular, among various studies related to CoT, multi-path inference stands out as a simple yet effective improvement. However, there is no optimal setting for the number of inference paths. Therefore, we have to increase the number of inference paths to obtain better results, which in turn increases the inference cost. To address this limitation, we can utilize question-related role templates to guide LLMs into relevant roles, thereby increasing the possibility of correct inferences for each path and further reducing dependence on the number of inference paths while improving reasoning accuracy. However, placing LLMs into specific roles may reduce their reasoning diversity and performance on a few tasks where role dependence is low. To alleviate the excessive immersion of the LLM into a specific role, we propose Nash CoT by constructing a competitive system on each path that balances the generation from role-specific LLMs' and the general LLMs' generation, thereby ensuring both effective role adoption and diversity in LLM generation further maintaining the performance of multi-path inference while reducing the requirement of the number of inference paths. We evaluate Nash CoT across various inference tasks, including Arabic Reasoning, Commonsense Question Answering, and Symbolic Inference, achieving results that are comparable to or better than those of multi-path CoT with the equal number of inference paths.

In automatic speech recognition, any factor that alters the acoustic properties of speech can pose a challenge to the system's performance. This paper presents a novel approach for automatic whispered speech recognition in the Irish dialect using the self-supervised WavLM model. Conventional automatic speech recognition systems often fail to accurately recognise whispered speech due to its distinct acoustic properties and the scarcity of relevant training data. To address this challenge, we utilized a pre-trained WavLM model, fine-tuned with a combination of whispered and normal speech data from the wTIMIT and CHAINS datasets, which include the English language in Singaporean and Irish dialects, respectively. Our baseline evaluation with the OpenAI Whisper model highlighted its limitations, achieving a Word Error Rate (WER) of 18.8% and a Character Error Rate (CER) of 4.24% on whispered speech. In contrast, the proposed WavLM-based system significantly improved performance, achieving a WER of 9.22% and a CER of 2.59%. These results demonstrate the efficacy of our approach in recognising whispered speech and underscore the importance of tailored acoustic modeling for robust automatic speech recognition systems. This study provides valuable insights into developing effective automatic speech recognition solutions for challenging speech affected by whisper and dialect. The source codes for this paper are freely available.

While orthogonalization exists in current dimensionality reduction methods in spectral clustering on undirected graphs, it does not scale in parallel computing environments. We propose four orthogonalization-free methods for spectral clustering. Our methods optimize one of two objective functions with no spurious local minima. In theory, two methods converge to features isomorphic to the eigenvectors corresponding to the smallest eigenvalues of the symmetric normalized Laplacian. The other two converge to features isomorphic to weighted eigenvectors weighting by the square roots of eigenvalues. We provide numerical evidence on the synthetic graphs from the IEEE HPEC Graph Challenge to demonstrate the effectiveness of the orthogonalization-free methods. Numerical results on the streaming graphs show that the orthogonalization-free methods are competitive in the streaming graph scenario since they can take full advantage of the computed features of previous graphs and converge fast. Our methods are also more scalable in parallel computing environments because orthogonalization is unnecessary. Numerical results are provided to demonstrate the scalability of our methods. Consequently, our methods have advantages over other dimensionality reduction methods when handling spectral clustering for large streaming graphs.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司