亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since Intersection-over-Union (IoU) based optimization maintains the consistency of the final IoU prediction metric and losses, it has been widely used in both regression and classification branches of single-stage 2D object detectors. Recently, several 3D object detection methods adopt IoU-based optimization and directly replace the 2D IoU with 3D IoU. However, such a direct computation in 3D is very costly due to the complex implementation and inefficient backward operations. Moreover, 3D IoU-based optimization is sub-optimal as it is sensitive to rotation and thus can cause training instability and detection performance deterioration. In this paper, we propose a novel Rotation-Decoupled IoU (RDIoU) method that can mitigate the rotation-sensitivity issue, and produce more efficient optimization objectives compared with 3D IoU during the training stage. Specifically, our RDIoU simplifies the complex interactions of regression parameters by decoupling the rotation variable as an independent term, yet preserving the geometry of 3D IoU. By incorporating RDIoU into both the regression and classification branches, the network is encouraged to learn more precise bounding boxes and concurrently overcome the misalignment issue between classification and regression. Extensive experiments on the benchmark KITTI and Waymo Open Dataset validate that our RDIoU method can bring substantial improvement for the single-stage 3D object detection.

相關內容

A few lightweight convolutional neural network (CNN) models have been recently designed for remote sensing object detection (RSOD). However, most of them simply replace vanilla convolutions with stacked separable convolutions, which may not be efficient due to a lot of precision losses and may not be able to detect oriented bounding boxes (OBB). Also, the existing OBB detection methods are difficult to constrain the shape of objects predicted by CNNs accurately. In this paper, we propose an effective lightweight oriented object detector (LO-Det). Specifically, a channel separation-aggregation (CSA) structure is designed to simplify the complexity of stacked separable convolutions, and a dynamic receptive field (DRF) mechanism is developed to maintain high accuracy by customizing the convolution kernel and its perception range dynamically when reducing the network complexity. The CSA-DRF component optimizes efficiency while maintaining high accuracy. Then, a diagonal support constraint head (DSC-Head) component is designed to detect OBBs and constrain their shapes more accurately and stably. Extensive experiments on public datasets demonstrate that the proposed LO-Det can run very fast even on embedded devices with the competitive accuracy of detecting oriented objects.

Learning robust feature matching between the template and search area is crucial for 3D Siamese tracking. The core of Siamese feature matching is how to assign high feature similarity on the corresponding points between the template and search area for precise object localization. In this paper, we propose a novel point cloud registration-driven Siamese tracking framework, with the intuition that spatially aligned corresponding points (via 3D registration) tend to achieve consistent feature representations. Specifically, our method consists of two modules, including a tracking-specific nonlocal registration module and a registration-aided Sinkhorn template-feature aggregation module. The registration module targets at the precise spatial alignment between the template and search area. The tracking-specific spatial distance constraint is proposed to refine the cross-attention weights in the nonlocal module for discriminative feature learning. Then, we use the weighted SVD to compute the rigid transformation between the template and search area, and align them to achieve the desired spatially aligned corresponding points. For the feature aggregation model, we formulate the feature matching between the transformed template and search area as an optimal transport problem and utilize the Sinkhorn optimization to search for the outlier-robust matching solution. Also, a registration-aided spatial distance map is built to improve the matching robustness in indistinguishable regions (e.g., smooth surface). Finally, guided by the obtained feature matching map, we aggregate the target information from the template into the search area to construct the target-specific feature, which is then fed into a CenterPoint-like detection head for object localization. Extensive experiments on KITTI, NuScenes and Waymo datasets verify the effectiveness of our proposed method.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司