亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constructing a large-scale labeled dataset in the real world, especially for high-level tasks (eg, Visual Question Answering), can be expensive and time-consuming. In addition, with the ever-growing amounts of data and architecture complexity, Active Learning has become an important aspect of computer vision research. In this work, we address Active Learning in the multi-modal setting of Visual Question Answering (VQA). In light of the multi-modal inputs, image and question, we propose a novel method for effective sample acquisition through the use of ad hoc single-modal branches for each input to leverage its information. Our mutual information based sample acquisition strategy Single-Modal Entropic Measure (SMEM) in addition to our self-distillation technique enables the sample acquisitor to exploit all present modalities and find the most informative samples. Our novel idea is simple to implement, cost-efficient, and readily adaptable to other multi-modal tasks. We confirm our findings on various VQA datasets through state-of-the-art performance by comparing to existing Active Learning baselines.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Despite recent advances in Visual QuestionAnswering (VQA), it remains a challenge todetermine how much success can be attributedto sound reasoning and comprehension ability.We seek to investigate this question by propos-ing a new task ofrationale generation. Es-sentially, we task a VQA model with generat-ing rationales for the answers it predicts. Weuse data from the Visual Commonsense Rea-soning (VCR) task, as it contains ground-truthrationales along with visual questions and an-swers. We first investigate commonsense un-derstanding in one of the leading VCR mod-els, ViLBERT, by generating rationales frompretrained weights using a state-of-the-art lan-guage model, GPT-2. Next, we seek to jointlytrain ViLBERT with GPT-2 in an end-to-endfashion with the dual task of predicting the an-swer in VQA and generating rationales. Weshow that this kind of training injects com-monsense understanding in the VQA modelthrough quantitative and qualitative evaluationmetrics

End-to-end training has been a popular approach for knowledge base question answering (KBQA). However, real world applications often contain answers of varied quality for users' questions. It is not appropriate to treat all available answers of a user question equally. This paper proposes a novel approach based on multiple instance learning to address the problem of noisy answers by exploring consensus among answers to the same question in training end-to-end KBQA models. In particular, the QA pairs are organized into bags with dynamic instance selection and different options of instance weighting. Curriculum learning is utilized to select instance bags during training. On the public CQA dataset, the new method significantly improves both entity accuracy and the Rouge-L score over a state-of-the-art end-to-end KBQA baseline.

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

Structured queries expressed in languages (such as SQL, SPARQL, or XQuery) offer a convenient and explicit way for users to express their information needs for a number of tasks. In this work, we present an approach to answer these directly over text data without storing results in a database. We specifically look at the case of knowledge bases where queries are over entities and the relations between them. Our approach combines distributed query answering (e.g. Triple Pattern Fragments) with models built for extractive question answering. Importantly, by applying distributed querying answering we are able to simplify the model learning problem. We train models for a large portion (572) of the relations within Wikidata and achieve an average 0.70 F1 measure across all models. We also present a systematic method to construct the necessary training data for this task from knowledge graphs and describe a prototype implementation.

One of the main challenges in ranking is embedding the query and document pairs into a joint feature space, which can then be fed to a learning-to-rank algorithm. To achieve this representation, the conventional state of the art approaches perform extensive feature engineering that encode the similarity of the query-answer pair. Recently, deep-learning solutions have shown that it is possible to achieve comparable performance, in some settings, by learning the similarity representation directly from data. Unfortunately, previous models perform poorly on longer texts, or on texts with significant portion of irrelevant information, or which are grammatically incorrect. To overcome these limitations, we propose a novel ranking algorithm for question answering, QARAT, which uses an attention mechanism to learn on which words and phrases to focus when building the mutual representation. We demonstrate superior ranking performance on several real-world question-answer ranking datasets, and provide visualization of the attention mechanism to otter more insights into how our models of attention could benefit ranking for difficult question answering challenges.

Visual Question Answering (VQA) requires integration of feature maps with drastically different structures and focus of the correct regions. Image descriptors have structures at multiple spatial scales, while lexical inputs inherently follow a temporal sequence and naturally cluster into semantically different question types. A lot of previous works use complex models to extract feature representations but neglect to use high-level information summary such as question types in learning. In this work, we propose Question Type-guided Attention (QTA). It utilizes the information of question type to dynamically balance between bottom-up and top-down visual features, respectively extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA architectures with extensive input ablation studies over the TDIUC dataset and show that QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset. By adding QTA on the state-of-art model MCB, we achieve 3% improvement for overall accuracy. Finally, we propose a multi-task extension to predict question types which generalizes QTA to applications that lack of question type, with minimal performance loss.

We introduce Interactive Question Answering (IQA), the task of answering questions that require an autonomous agent to interact with a dynamic visual environment. IQA presents the agent with a scene and a question, like: "Are there any apples in the fridge?" The agent must navigate around the scene, acquire visual understanding of scene elements, interact with objects (e.g. open refrigerators) and plan for a series of actions conditioned on the question. Popular reinforcement learning approaches with a single controller perform poorly on IQA owing to the large and diverse state space. We propose the Hierarchical Interactive Memory Network (HIMN), consisting of a factorized set of controllers, allowing the system to operate at multiple levels of temporal abstraction. To evaluate HIMN, we introduce IQUAD V1, a new dataset built upon AI2-THOR, a simulated photo-realistic environment of configurable indoor scenes with interactive objects. IQUAD V1 has 75,000 questions, each paired with a unique scene configuration. Our experiments show that our proposed model outperforms popular single controller based methods on IQUAD V1. For sample questions and results, please view our video: //youtu.be/pXd3C-1jr98.

In this paper we aim to answer questions based on images when provided with a dataset of question-answer pairs for a number of images during training. A number of methods have focused on solving this problem by using image based attention. This is done by focusing on a specific part of the image while answering the question. Humans also do so when solving this problem. However, the regions that the previous systems focus on are not correlated with the regions that humans focus on. The accuracy is limited due to this drawback. In this paper, we propose to solve this problem by using an exemplar based method. We obtain one or more supporting and opposing exemplars to obtain a differential attention region. This differential attention is closer to human attention than other image based attention methods. It also helps in obtaining improved accuracy when answering questions. The method is evaluated on challenging benchmark datasets. We perform better than other image based attention methods and are competitive with other state of the art methods that focus on both image and questions.

This paper gives comprehensive analyses of corpora based on Wikipedia for several tasks in question answering. Four recent corpora are collected,WikiQA, SelQA, SQuAD, and InfoQA, and first analyzed intrinsically by contextual similarities, question types, and answer categories. These corpora are then analyzed extrinsically by three question answering tasks, answer retrieval, selection, and triggering. An indexing-based method for the creation of a silver-standard dataset for answer retrieval using the entire Wikipedia is also presented. Our analysis shows the uniqueness of these corpora and suggests a better use of them for statistical question answering learning.

We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (//cloudcv.org/vqa).

北京阿比特科技有限公司