Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical challenges. Nevertheless, pragmatic problem-solving demands that things should be sorted so that their grouping will promote successful actions for some specific end. In this article, we review and compare previous attempts to classify AI systems for the purpose of implementing AI governance in practice. We find that attempts to classify AI systems found in previous literature use one of three mental model. The Switch, i.e., a binary approach according to which systems either are or are not considered AI systems depending on their characteristics. The Ladder, i.e., a risk-based approach that classifies systems according to the ethical risks they pose. And the Matrix, i.e., a multi-dimensional classification of systems that take various aspects into account, such as context, data input, and decision-model. Each of these models for classifying AI systems comes with its own set of strengths and weaknesses. By conceptualising different ways of classifying AI systems into simple mental models, we hope to provide organisations that design, deploy, or regulate AI systems with the conceptual tools needed to operationalise AI governance in practice.
Current gait recognition research predominantly focuses on extracting appearance features effectively, but the performance is severely compromised by the vulnerability of silhouettes under unconstrained scenes. Consequently, numerous studies have explored how to harness information from various models, particularly by sufficiently utilizing the intrinsic information of skeleton sequences. While these model-based methods have achieved significant performance, there is still a huge gap compared to appearance-based methods, which implies the potential value of bridging silhouettes and skeletons. In this work, we make the first attempt to reconstruct dense body shapes from discrete skeleton distributions via the diffusion model, demonstrating a new approach that connects cross-modal features rather than focusing solely on intrinsic features to improve model-based methods. To realize this idea, we propose a novel gait diffusion model named DiffGait, which has been designed with four specific adaptations suitable for gait recognition. Furthermore, to effectively utilize the reconstructed silhouettes and skeletons, we introduce Perception Gait Integration (PGI) to integrate different gait features through a two-stage process. Incorporating those modifications leads to an efficient model-based gait recognition framework called ZipGait. Through extensive experiments on four public benchmarks, ZipGait demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both cross-domain and intra-domain settings, while achieving significant plug-and-play performance improvements.
The integration of artificial intelligence (AI) across contemporary industries is not just a technological upgrade but a transformation with profound structural implications. This paper explores the concept of structural risks associated with the rapid integration of advanced AI systems across social, economic, and political systems. This framework challenges the conventional perspectives that primarily focus on direct AI threats such as accidents and misuse and suggests that these more proximate risks are interconnected and influenced by a larger sociotechnical system. By analyzing the interactions between technological advancements and social dynamics, this study isolates three primary categories of structural risk: antecedent structural causes, antecedent system causes, and deleterious feedback loops. We present a comprehensive framework to understand the causal chains that drive these risks, highlighting the interdependence between structural forces and the more proximate risks of misuse and system failures. The paper articulates how unchecked AI advancement can reshape power dynamics, trust, and incentive structures, leading to profound and often unpredictable shifts. We introduce a methodological research agenda for mapping, simulating, and gaming these dynamics aimed at preparing policymakers and national security officials for the challenges posed by next-generation AI technologies. The paper concludes with policy recommendations.
Experimentation is an essential method for causal inference in any empirical discipline. Crossover-design experiments are common in Software Engineering (SE) research. In these, subjects apply more than one treatment in different orders. This design increases the amount of obtained data and deals with subject variability but introduces threats to internal validity like the learning and carryover effect. Vegas et al. reviewed the state of practice for crossover designs in SE research and provided guidelines on how to address its threats during data analysis while still harnessing its benefits. In this paper, we reflect on the impact of these guidelines and review the state of analysis of crossover design experiments in SE publications between 2015 and March 2024. To this end, by conducting a forward snowballing of the guidelines, we survey 136 publications reporting 67 crossover-design experiments and evaluate their data analysis against the provided guidelines. The results show that the validity of data analyses has improved compared to the original state of analysis. Still, despite the explicit guidelines, only 29.5% of all threats to validity were addressed properly. While the maturation and the optimal sequence threats are properly addressed in 35.8% and 38.8% of all studies in our sample respectively, the carryover threat is only modeled in about 3% of the observed cases. The lack of adherence to the analysis guidelines threatens the validity of the conclusions drawn from crossover design experiments
Unit testing is an important practice that helps ensure the quality of a software system by validating its behavior through a series of test cases. Core to these test cases are assertion statements, which enable software practitioners to validate the correctness of the system's behavior. To aid with understanding and troubleshooting test case failures, practitioners can include a message (i.e., assertion message) within the assertion statement. While prior studies have examined the frequency and structure of assertion messages by mining software repositories, they do not determine their types or purposes or how practitioners perceive the need for or the usage of various types of assertion messages. In this paper, we survey 138 professional software practitioners to gather insights into their experience and views regarding assertion messages. Our findings reveal that a majority of survey respondents find assertion messages valuable for troubleshooting failures, improving test understandability, and serving as documentation. However, not all respondents consistently include messages in their assertion methods. We also identified common considerations for constructing effective assertion messages, challenges in crafting them, maintenance techniques, and their integration into debugging processes. Our results contribute to the understanding of current practices and provide guidelines for authoring high-quality assertion messages, serving as a foundation for best practices and coding standards. Furthermore, the insights can guide the improvement of automated unit testing tools by incorporating checks for the presence and quality of assertion messages and providing real-time feedback to practitioners.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.