Data-driven stories seek to inform and persuade audiences through the use of data visualisations and engaging narratives. These stories have now been highly optimised to be viewed on desktop and mobile computers. In contrast, while immersive virtual and augmented reality (VR/AR) technologies have been shown to be more persuasive, no clear standard has yet emerged for such immersive stories. With this in mind, we propose that a hybrid data-driven storytelling approach can leverage the familiarity of 2D display devices with the immersiveness and presence afforded by VR/AR headsets. In this position paper, we characterise hybrid data-driven stories by describing its design opportunities, considerations, and challenges. In particular, we describe how both 2D and 3D display environments can play either complementary or symbiotic roles with each other for the purposes of storytelling. We hope that this work inspires researchers to investigate how hybrid user interfaces may be used for storytelling.
Safe autonomous driving critically depends on how well the ego-vehicle can predict the trajectories of neighboring vehicles. To this end, several trajectory prediction algorithms have been presented in the existing literature. Many of these approaches output a multi-modal distribution of obstacle trajectories instead of a single deterministic prediction to account for the underlying uncertainty. However, existing planners cannot handle the multi-modality based on just sample-level information of the predictions. With this motivation, this paper proposes a trajectory optimizer that can leverage the distributional aspects of the prediction in a computationally tractable and sample-efficient manner. Our optimizer can work with arbitrarily complex distributions and thus can be used with output distribution represented as a deep neural network. The core of our approach is built on embedding distribution in Reproducing Kernel Hilbert Space (RKHS), which we leverage in two ways. First, we propose an RKHS embedding approach to select probable samples from the obstacle trajectory distribution. Second, we rephrase chance-constrained optimization as distribution matching in RKHS and propose a novel sampling-based optimizer for its solution. We validate our approach with hand-crafted and neural network-based predictors trained on real-world datasets and show improvement over the existing stochastic optimization approaches in safety metrics.
Accurately assessing the potential value of new sensor observations is a critical aspect of planning for active perception. This task is particularly challenging when reasoning about high-level scene understanding using measurements from vision-based neural networks. Due to appearance-based reasoning, the measurements are susceptible to several environmental effects such as the presence of occluders, variations in lighting conditions, and redundancy of information due to similarity in appearance between nearby viewpoints. To address this, we propose a new active perception framework incorporating an arbitrary number of perceptual effects in planning and fusion. Our method models the correlation with the environment by a set of general functions termed perceptual factors to construct a perceptual map, which quantifies the aggregated influence of the environment on candidate viewpoints. This information is seamlessly incorporated into the planning and fusion processes by adjusting the uncertainty associated with measurements to weigh their contributions. We evaluate our perceptual maps in a simulated environment that reproduces environmental conditions common in robotics applications. Our results show that, by accounting for environmental effects within our perceptual maps, we improve in the state estimation by correctly selecting the viewpoints and considering the measurement noise correctly when affected by environmental factors. We furthermore deploy our approach on a ground robot to showcase its applicability for real-world active perception missions.
The problem of audio-to-text alignment has seen significant amount of research using complete supervision during training. However, this is typically not in the context of long audio recordings wherein the text being queried does not appear verbatim within the audio file. This work is a collaboration with a non-governmental organization called CARE India that collects long audio health surveys from young mothers residing in rural parts of Bihar, India. Given a question drawn from a questionnaire that is used to guide these surveys, we aim to locate where the question is asked within a long audio recording. This is of great value to African and Asian organizations that would otherwise have to painstakingly go through long and noisy audio recordings to locate questions (and answers) of interest. Our proposed framework, INDENT, uses a cross-attention-based model and prior information on the temporal ordering of sentences to learn speech embeddings that capture the semantics of the underlying spoken text. These learnt embeddings are used to retrieve the corresponding audio segment based on text queries at inference time. We empirically demonstrate the significant effectiveness (improvement in R-avg of about 3%) of our model over those obtained using text-based heuristics. We also show how noisy ASR, generated using state-of-the-art ASR models for Indian languages, yields better results when used in place of speech. INDENT, trained only on Hindi data is able to cater to all languages supported by the (semantically) shared text space. We illustrate this empirically on 11 Indic languages.
The prevalence of propaganda in our digital society poses a challenge to societal harmony and the dissemination of truth. Detecting propaganda through NLP in text is challenging due to subtle manipulation techniques and contextual dependencies. To address this issue, we investigate the effectiveness of modern Large Language Models (LLMs) such as GPT-3 and GPT-4 for propaganda detection. We conduct experiments using the SemEval-2020 task 11 dataset, which features news articles labeled with 14 propaganda techniques as a multi-label classification problem. Five variations of GPT-3 and GPT-4 are employed, incorporating various prompt engineering and fine-tuning strategies across the different models. We evaluate the models' performance by assessing metrics such as $F1$ score, $Precision$, and $Recall$, comparing the results with the current state-of-the-art approach using RoBERTa. Our findings demonstrate that GPT-4 achieves comparable results to the current state-of-the-art. Further, this study analyzes the potential and challenges of LLMs in complex tasks like propaganda detection.
Phase synchrony information plays a crucial role in analyzing functional brain connectivity and identifying brain activities. A widely adopted feature extraction pipeline, composed of preprocessing, selection of EEG acquisition channels, and phase locking value (PLV) calculation, has achieved success in motor imagery classification (MI). However, this pipeline is manual and reliant on expert knowledge, limiting its convenience and adaptability to different application scenarios. Moreover, most studies have employed mediocre data-independent spatial filters to suppress noise, impeding the exploration of more significant phase synchronization phenomena. To address the issues, we propose the concept of phase synchrony component self-organization, which enables the adaptive learning of data-dependent spatial filters for automating both the preprocessing and channel selection procedures. Based on this concept, the first deep learning end-to-end network is developed, which directly extracts phase synchrony-based features from raw EEG signals and perform classification. The network learns optimal filters during training, which are obtained when the network achieves peak classification results. Extensive experiments have demonstrated that our network outperforms state-of-the-art methods. Remarkably, through the learned optimal filters, significant phase synchronization phenomena can be observed. Specifically, by calculating the PLV between a pair of signals extracted from each sample using two of the learned spatial filters, we have obtained an average PLV exceeding 0.87 across all tongue MI samples. This high PLV indicates a groundbreaking discovery in the synchrony pattern of tongue MI.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.