亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generic sentence embeddings provide a coarse-grained approximation of semantic textual similarity but ignore specific aspects that make texts similar. Conversely, aspect-based sentence embeddings provide similarities between texts based on certain predefined aspects. Thus, similarity predictions of texts are more targeted to specific requirements and more easily explainable. In this paper, we present AspectCSE, an approach for aspect-based contrastive learning of sentence embeddings. Results indicate that AspectCSE achieves an average improvement of 3.97% on information retrieval tasks across multiple aspects compared to the previous best results. We also propose using Wikidata knowledge graph properties to train models of multi-aspect sentence embeddings in which multiple specific aspects are simultaneously considered during similarity predictions. We demonstrate that multi-aspect embeddings outperform single-aspect embeddings on aspect-specific information retrieval tasks. Finally, we examine the aspect-based sentence embedding space and demonstrate that embeddings of semantically similar aspect labels are often close, even without explicit similarity training between different aspect labels.

相關內容

Most multilingual vision-and-language (V&L) research aims to accomplish multilingual and multimodal capabilities within one model. However, the scarcity of multilingual captions for images has hindered the development. To overcome this obstacle, we propose ICU, Image Caption Understanding, which divides a V&L task into two stages: a V&L model performs image captioning in English, and a multilingual language model (mLM), in turn, takes the caption as the alt text and performs crosslingual language understanding. The burden of multilingual processing is lifted off V&L model and placed on mLM. Since the multilingual text data is relatively of higher abundance and quality, ICU can facilitate the conquering of language barriers for V&L models. In experiments on two tasks across 9 languages in the IGLUE benchmark, we show that ICU can achieve new state-of-the-art results for five languages, and comparable results for the rest.

Trained with an unprecedented scale of data, large language models (LLMs) like ChatGPT and GPT-4 exhibit the emergence of significant reasoning abilities from model scaling. Such a trend underscored the potential of training LLMs with unlimited language data, advancing the development of a universal embodied agent. In this work, we introduce the NavGPT, a purely LLM-based instruction-following navigation agent, to reveal the reasoning capability of GPT models in complex embodied scenes by performing zero-shot sequential action prediction for vision-and-language navigation (VLN). At each step, NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status, and makes the decision to approach the target. Through comprehensive experiments, we demonstrate NavGPT can explicitly perform high-level planning for navigation, including decomposing instruction into sub-goal, integrating commonsense knowledge relevant to navigation task resolution, identifying landmarks from observed scenes, tracking navigation progress, and adapting to exceptions with plan adjustment. Furthermore, we show that LLMs is capable of generating high-quality navigational instructions from observations and actions along a path, as well as drawing accurate top-down metric trajectory given the agent's navigation history. Despite the performance of using NavGPT to zero-shot R2R tasks still falling short of trained models, we suggest adapting multi-modality inputs for LLMs to use as visual navigation agents and applying the explicit reasoning of LLMs to benefit learning-based models.

Intent detection and identification from multi-turn dialogue has become a widely explored technique in conversational agents, for example, voice assistants and intelligent customer services. The conventional approaches typically cast the intent mining process as a classification task. Although neural classifiers have proven adept at such classification tasks, the issue of neural network models often impedes their practical deployment in real-world settings. We present a novel graph-based multi-turn dialogue system called , which identifies a user's intent by identifying intent elements and a standard query from a dynamically constructed and extensible intent graph using reinforcement learning. In addition, we provide visualization components to monitor the immediate reasoning path for each turn of a dialogue, which greatly facilitates further improvement of the system.

Data Augmentation through generating pseudo data has been proven effective in mitigating the challenge of data scarcity in the field of Grammatical Error Correction (GEC). Various augmentation strategies have been widely explored, most of which are motivated by two heuristics, i.e., increasing the distribution similarity and diversity of pseudo data. However, the underlying mechanism responsible for the effectiveness of these strategies remains poorly understood. In this paper, we aim to clarify how data augmentation improves GEC models. To this end, we introduce two interpretable and computationally efficient measures: Affinity and Diversity. Our findings indicate that an excellent GEC data augmentation strategy characterized by high Affinity and appropriate Diversity can better improve the performance of GEC models. Based on this observation, we propose MixEdit, a data augmentation approach that strategically and dynamically augments realistic data, without requiring extra monolingual corpora. To verify the correctness of our findings and the effectiveness of the proposed MixEdit, we conduct experiments on mainstream English and Chinese GEC datasets. The results show that MixEdit substantially improves GEC models and is complementary to traditional data augmentation methods.

Computational harmony analysis is important for MIR tasks such as automatic segmentation, corpus analysis and automatic chord label estimation. However, recent research into the ambiguous nature of musical harmony, causing limited inter-rater agreement, has made apparent that there is a glass ceiling for common metrics such as accuracy. Commonly, these issues are addressed either in the training data itself by creating majority-rule annotations or during the training phase by learning soft targets. We propose a novel alternative approach in which a human and an autoregressive model together co-create a harmonic annotation for an audio track. After automatically generating harmony predictions, a human sparsely annotates parts with low model confidence and the model then adjusts its predictions following human guidance. We evaluate our model on a dataset of popular music and we show that, with this human-in-the-loop approach, harmonic analysis performance improves over a model-only approach. The human contribution is amplified by the second, constrained prediction of the model.

We propose a novel quasi-Newton method for solving the sparse inverse covariance estimation problem also known as the graphical least absolute shrinkage and selection operator (GLASSO). This problem is often solved using a second-order quadratic approximation. However, in such algorithms the Hessian term is complex and computationally expensive to handle. Therefore, our method uses the inverse of the Hessian as a preconditioner to simplify and approximate the quadratic element at the cost of a more complex \(\ell_1\) element. The variables of the resulting preconditioned problem are coupled only by the \(\ell_1\) sub-derivative of each other, which can be guessed with minimal cost using the gradient itself, allowing the algorithm to be parallelized and implemented efficiently on GPU hardware accelerators. Numerical results on synthetic and real data demonstrate that our method is competitive with other state-of-the-art approaches.

We introduce a novel framework named ClarifyGPT, which aims to enhance code generation by empowering LLMs with the ability to identify ambiguous requirements and ask targeted clarifying questions. In particular, ClarifyGPT first detects whether a given requirement is ambiguous by performing a code consistency check. If it is ambiguous, ClarifyGPT prompts an LLM to generate targeted clarifying questions. After receiving question responses, ClarifyGPT refines the ambiguous requirement and inputs it into the same LLM to generate a final code solution. To evaluate our ClarifyGPT, we first conduct a human evaluation involving ten participants who use ClarifyGPT for code generation on two publicly available benchmarks: MBPP-sanitized and MBPP-ET. The results show that ClarifyGPT elevates the performance (Pass@1) of GPT-4 from 70.96% to 80.80% on MBPP-sanitized. Furthermore, to perform large-scale automated evaluations of ClarifyGPT across different LLMs and benchmarks without requiring user participation, we introduce a high-fidelity simulation method to simulate user responses. The automated evaluation results also demonstrate that ClarifyGPT can significantly enhance code generation performance compared to the baselines. In particular, ClarifyGPT improves the average performance of GPT-4 and ChatGPT across four benchmarks from 68.02% to 75.75% and from 58.55% to 67.22%, respectively. We believe that ClarifyGPT can effectively facilitate the practical application of LLMs in real-world development environments.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司