亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advent of AI-based coding engines, it is possible to convert natural language requirements to executable code in standard programming languages. However, AI-generated code can be unreliable, and the natural language requirements driving this code may be ambiguous. In other words, the intent may not be accurately captured in the code generated from AI-coding engines like Copilot. The goal of our work is to discover the programmer intent, while generating code which conforms to the intent and a proof of this conformance. Our approach to intent discovery is powered by a novel repair engine called program-proof co-evolution, where the object of repair is a tuple (code, logical specification, test) generated by an LLM from the same natural language description. The program and the specification capture the initial operational and declarative description of intent, while the test represents a concrete, albeit partial, understanding of the intent. Our objective is to achieve consistency between the program, the specification, and the test by incrementally refining our understanding of the user intent. Reaching consistency through this repair process provides us with a formal, logical description of the intent, which is then translated back into natural language for the developer's inspection. The resultant intent description is now unambiguous, though expressed in natural language. We demonstrate how the unambiguous intent discovered through our approach increases the percentage of verifiable auto-generated programs on a recently proposed dataset in the Dafny programming language.

相關內容

代(dai)碼(ma)(Code)是專(zhuan)知(zhi)網的一個重要(yao)知(zhi)識(shi)資料文檔板塊,旨在(zai)整理收錄論文源代(dai)碼(ma)、復現代(dai)碼(ma),經典工程代(dai)碼(ma)等,便于用(yong)戶查閱(yue)下載使用(yong)。

Sequential problems are ubiquitous in AI, such as in reinforcement learning or natural language processing. State-of-the-art deep sequential models, like transformers, excel in these settings but fail to guarantee the satisfaction of constraints necessary for trustworthy deployment. In contrast, neurosymbolic AI (NeSy) provides a sound formalism to enforce constraints in deep probabilistic models but scales exponentially on sequential problems. To overcome these limitations, we introduce relational neurosymbolic Markov models (NeSy-MMs), a new class of end-to-end differentiable sequential models that integrate and provably satisfy relational logical constraints. We propose a strategy for inference and learning that scales on sequential settings, and that combines approximate Bayesian inference, automated reasoning, and gradient estimation. Our experiments show that NeSy-MMs can solve problems beyond the current state-of-the-art in neurosymbolic AI and still provide strong guarantees with respect to desired properties. Moreover, we show that our models are more interpretable and that constraints can be adapted at test time to out-of-distribution scenarios.

Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.

Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.

Mechanism design, a branch of economics, aims to design rules that can autonomously achieve desired outcomes in resource allocation and public decision making. The research on mechanism design using machine learning is called automated mechanism design or mechanism learning. In our research, we constructed a new network based on the existing method for single auctions and aimed to automatically design a mechanism by applying it to double auctions. In particular, we focused on the following four desirable properties for the mechanism: individual rationality, balanced budget, Pareto efficiency, and incentive compatibility. We conducted experiments assuming a small-scale double auction and clarified how deterministic the trade matching of the obtained mechanism is. We also confirmed how much the learnt mechanism satisfies the four properties compared to two representative protocols. As a result, we verified that the mechanism is more budget-balanced than the VCG protocol and more economically efficient than the MD protocol, with the incentive compatibility mostly guaranteed.

Decentralized partially observable Markov decision processes with communication (Dec-POMDP-Com) provide a framework for multiagent decision making under uncertainty, but the NEXP-complete complexity renders solutions intractable in general. While sharing actions and observations can reduce the complexity to PSPACE-complete, we propose an approach that bridges POMDPs and Dec-POMDPs by communicating only suggested joint actions, eliminating the need to share observations while maintaining performance comparable to fully centralized planning and execution. Our algorithm estimates joint beliefs using shared actions to prune infeasible beliefs. Each agent maintains possible belief sets for other agents, pruning them based on suggested actions to form an estimated joint belief usable with any centralized policy. This approach requires solving a POMDP for each agent, reducing computational complexity while preserving performance. We demonstrate its effectiveness on several Dec-POMDP benchmarks showing performance comparable to centralized methods when shared actions enable effective belief pruning. This action-based communication framework offers a natural avenue for integrating human-agent cooperation, opening new directions for scalable multiagent planning under uncertainty, with applications in both autonomous systems and human-agent teams.

Variance is a basic metric to evaluate the degree of data dispersion, and it is also frequently used in the realm of statistics. However, due to the computing variance and the large dataset being time-consuming, there is an urge to accelerate this computing process. The paper suggests a new method to reduce the time of this computation, it assumes a scenario in which we already know the variance of the original dataset, and the whole variance of this merge dataset could be expressed in the form of addition between the original variance and a remainder term. When we want to calculate the total variance after this adds up, the method only needs to calculate the remainder to get the result instead of recalculating the total variance again, which we named this type of method PKA(Prior Knowledge Acceleration). The paper mathematically proves the effectiveness of PKA in variance calculation, and the conditions for this method to accelerate properly.

Research and industry are rapidly advancing the innovation and adoption of foundation model-based systems, yet the tools for managing these models have not kept pace. Understanding the provenance and lineage of models is critical for researchers, industry, regulators, and public trust. While model cards and system cards were designed to provide transparency, they fall short in key areas: tracing model genealogy, enabling machine readability, offering reliable centralized management systems, and fostering consistent creation incentives. This challenge mirrors issues in software supply chain security, but AI/ML remains at an earlier stage of maturity. Addressing these gaps requires industry-standard tooling that can be adopted by foundation model publishers, open-source model innovators, and major distribution platforms. We propose a machine-readable model specification format to simplify the creation of model records, thereby reducing error-prone human effort, notably when a new model inherits most of its design from a foundation model. Our solution explicitly traces relationships between upstream and downstream models, enhancing transparency and traceability across the model lifecycle. To facilitate the adoption, we introduce the unified model record (UMR) repository , a semantically versioned system that automates the publication of model records to multiple formats (PDF, HTML, LaTeX) and provides a hosted web interface (//modelrecord.com/). This proof of concept aims to set a new standard for managing foundation models, bridging the gap between innovation and responsible model management.

Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司