亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning-based control uses data to design efficient controllers for specific systems. When multiple systems are involved, experience transfer usually focuses on data availability and controller performance yet neglects robustness to variations between systems. In contrast, this letter explores experience transfer from a robustness perspective. We leverage the transfer to design controllers that are robust not only to the uncertainty regarding an individual agent's model but also to the choice of agent in a fleet. Experience transfer enables the design of safe and robust controllers that work out of the box for all systems in a heterogeneous fleet. Our approach combines scenario optimization and recent formulations for direct data-driven control without the need to estimate a model of the system or determine uncertainty bounds for its parameters. We demonstrate the benefits of our data-driven robustification method through a numerical case study and obtain learned controllers that generalize well from a small number of open-loop trajectories in a quadcopter simulation.

相關內容

Large-scale well-annotated datasets are of great importance for training an effective object detector. However, obtaining accurate bounding box annotations is laborious and demanding. Unfortunately, the resultant noisy bounding boxes could cause corrupt supervision signals and thus diminish detection performance. Motivated by the observation that the real ground-truth is usually situated in the aggregation region of the proposals assigned to a noisy ground-truth, we propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals. In DISCO, spatial distribution modeling is performed to statistically extract the potential locations of objects. Based on the modeled distribution, three distribution-aware techniques, i.e., distribution-aware proposal augmentation (DA-Aug), distribution-aware box refinement (DA-Ref), and distribution-aware confidence estimation (DA-Est), are developed to improve classification, localization, and interpretability, respectively. Extensive experiments on large-scale noisy image datasets (i.e., Pascal VOC and MS-COCO) demonstrate that DISCO can achieve state-of-the-art detection performance, especially at high noise levels.

Cloud computing is one of the most used distributed systems for data processing and data storage. Due to the continuous increase in the size of the data processed by cloud computing, scheduling multiple tasks to maintain efficiency while reducing idle becomes more and more challenging. Efficient cloud-based scheduling is also highly sought by modern transportation systems to improve their security. In this paper, we propose a hybrid algorithm that leverages genetic algorithms and neural networks to improve scheduling. Our method classifies tasks with the Neural Network Task Classification (N2TC) and sends the selected tasks to the Genetic Algorithm Task Assignment (GATA) to allocate resources. It is fairness aware to prevent starvation and considers the execution time, response time, cost, and system efficiency. Evaluations show that our approach outperforms the state-of-the-art method by 3.2% at execution time, 13.3% in costs, and 12.1% at response time.

Computational simulation is increasingly relied upon for high-consequence engineering decisions, and a foundational element to solid mechanics simulations, such as finite element analysis (FEA), is a credible constitutive or material model. Calibration of these complex models is an essential step; however, the selection, calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure (Interlaced Characterization and Calibration (ICC)) is introduced. This framework leverages Bayesian optimal experimental design (BOED) to select the optimal load path for a cruciform specimen in order to collect the most informative data for model calibration. The critical first piece of algorithm development is to demonstrate the active experimental design for a fast model with simulated data. For this demonstration, a material point simulator that models a plane stress elastoplastic material subject to bi-axial loading was chosen. The ICC framework is demonstrated on two exemplar problems in which BOED is used to determine which load step to take, e.g., in which direction to increment the strain, at each iteration of the characterization and calibration cycle. Calibration results from data obtained by adaptively selecting the load path within the ICC algorithm are compared to results from data generated under two naive static load paths that were chosen a priori based on human intuition. In these exemplar problems, data generated in an adaptive setting resulted in calibrated model parameters with reduced measures of uncertainty compared to the static settings.

Data center schedulers operate at unprecedented scales today to accommodate the growing demand for computing and storage power. The challenge that schedulers face is meeting the requirements of scheduling speeds despite the scale. To do so, most scheduler architectures use parallelism. However, these architectures consist of multiple parallel scheduling entities that can only utilize partial knowledge of the data center's state, as maintaining consistent global knowledge or state would involve considerable communication overhead. The disadvantage of scheduling without global knowledge is sub-optimal placements-tasks may be made to wait in queues even though there are resources available in zones outside the scope of the scheduling entity's state. This leads to unnecessary queuing overheads and lower resource utilization of the data center. In this paper, extend our previous work on Megha, a federated decentralized data center scheduling architecture that uses eventual consistency. The architecture utilizes both parallelism and an eventually-consistent global state in each of its scheduling entities to make fast decisions in a scalable manner. In our work, we compare Megha with 3 scheduling architectures: Sparrow, Eagle, and Pigeon, using simulation. We also evaluate Megha's prototype on a 123-node cluster and compare its performance with Pigeon's prototype using cluster traces. The results of our experiments show that Megha consistently reduces delays in job completion time when compared to other architectures.

Sequential testing problems involve a complex system with several components, each of which is "working" with some independent probability. The outcome of each component can be determined by performing a test, which incurs some cost. The overall system status is given by a function $f$ of the outcomes of its components. The goal is to evaluate this function $f$ by performing tests at the minimum expected cost. While there has been extensive prior work on this topic, provable approximation bounds are mainly limited to simple functions like ``k-out-of-n'' and halfspaces. We consider significantly more general "score classification" functions, and provide the first constant factor approximation algorithm (improving over a previous logarithmic approximation ratio). Moreover, our policy is non adaptive: it just involves performing tests in an a priori fixed order. We also consider the related halfspace evaluation problem, where we want to evaluate some function on $d$ halfspaces (e.g., intersection of halfspaces). We show that our approach provides an $O(d^2\log d)$-approximation algorithm for this problem. Our algorithms also extend to the setting of "batched'' tests, where multiple tests can be performed simultaneously while incurring an extra setup cost. Finally, we perform computational experiments that demonstrate the practical performance of our algorithm for score classification. We observe that, for most instances, the cost of our algorithm is within $50\%$ of an information-theoretic lower bound on the optimal value.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

北京阿比特科技有限公司