In this paper, we consider the task of space-time video super-resolution (ST-VSR), which simultaneously increases the spatial resolution and frame rate for a given video. However, existing methods typically suffer from difficulties in how to efficiently leverage information from a large range of neighboring frames or avoiding the speed degradation in the inference using deformable ConvLSTM strategies for alignment. % Some recent LSTM-based ST-VSR methods have achieved promising results. To solve the above problem of the existing methods, we propose a coarse-to-fine bidirectional recurrent neural network instead of using ConvLSTM to leverage knowledge between adjacent frames. Specifically, we first use bi-directional optical flow to update the hidden state and then employ a Feature Refinement Module (FRM) to refine the result. Since we could fully utilize a large range of neighboring frames, our method leverages local and global information more effectively. In addition, we propose an optical flow-reuse strategy that can reuse the intermediate flow of adjacent frames, which considerably reduces the computation burden of frame alignment compared with existing LSTM-based designs. Extensive experiments demonstrate that our optical-flow-reuse-based bidirectional recurrent network(OFR-BRN) is superior to the state-of-the-art methods both in terms of accuracy and efficiency.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Recent advances in single image super-resolution (SISR) explored the power of convolutional neural network (CNN) to achieve a better performance. Despite the great success of CNN-based methods, it is not easy to apply these methods to edge devices due to the requirement of heavy computation. To solve this problem, various fast and lightweight CNN models have been proposed. The information distillation network is one of the state-of-the-art methods, which adopts the channel splitting operation to extract distilled features. However, it is not clear enough how this operation helps in the design of efficient SISR models. In this paper, we propose the feature distillation connection (FDC) that is functionally equivalent to the channel splitting operation while being more lightweight and flexible. Thanks to FDC, we can rethink the information multi-distillation network (IMDN) and propose a lightweight and accurate SISR model called residual feature distillation network (RFDN). RFDN uses multiple feature distillation connections to learn more discriminative feature representations. We also propose a shallow residual block (SRB) as the main building block of RFDN so that the network can benefit most from residual learning while still being lightweight enough. Extensive experimental results show that the proposed RFDN achieve a better trade-off against the state-of-the-art methods in terms of performance and model complexity. Moreover, we propose an enhanced RFDN (E-RFDN) and won the first place in the AIM 2020 efficient super-resolution challenge. Code will be available at //github.com/njulj/RFDN.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.
Attention mechanisms are a design trend of deep neural networks that stands out in various computer vision tasks. Recently, some works have attempted to apply attention mechanisms to single image super-resolution (SR) tasks. However, they apply the mechanisms to SR in the same or similar ways used for high-level computer vision problems without much consideration of the different nature between SR and other problems. In this paper, we propose a new attention method, which is composed of new channel-wise and spatial attention mechanisms optimized for SR and a new fused attention to combine them. Based on this, we propose a new residual attention module (RAM) and a SR network using RAM (SRRAM). We provide in-depth experimental analysis of different attention mechanisms in SR. It is shown that the proposed method can construct both deep and lightweight SR networks showing improved performance in comparison to existing state-of-the-art methods.
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image synthesis problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without understanding temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a novel video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generator and discriminator architectures, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our approach to future video prediction, outperforming several state-of-the-art competing systems.
In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (sentence to video) flows for video captioning. Specifically, the encoder-decoder makes use of the forward flow to produce the sentence description based on the encoded video semantic features. Two types of reconstructors are customized to employ the backward flow and reproduce the video features based on the hidden state sequence generated by the decoder. The generation loss yielded by the encoder-decoder and the reconstruction loss introduced by the reconstructor are jointly drawn into training the proposed RecNet in an end-to-end fashion. Experimental results on benchmark datasets demonstrate that the proposed reconstructor can boost the encoder-decoder models and leads to significant gains in video caption accuracy.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.
In this paper, we propose a novel feature learning framework for video person re-identification (re-ID). The proposed framework largely aims to exploit the adequate temporal information of video sequences and tackle the poor spatial alignment of moving pedestrians. More specifically, for exploiting the temporal information, we design a temporal residual learning (TRL) module to simultaneously extract the generic and specific features of consecutive frames. The TRL module is equipped with two bi-directional LSTM (BiLSTM), which are respectively responsible to describe a moving person in different aspects, providing complementary information for better feature representations. To deal with the poor spatial alignment in video re-ID datasets, we propose a spatial-temporal transformer network (ST^2N) module. Transformation parameters in the ST^2N module are learned by leveraging the high-level semantic information of the current frame as well as the temporal context knowledge from other frames. The proposed ST^2N module with less learnable parameters allows effective person alignments under significant appearance changes. Extensive experimental results on the large-scale MARS, PRID2011, ILIDS-VID and SDU-VID datasets demonstrate that the proposed method achieves consistently superior performance and outperforms most of the very recent state-of-the-art methods.
Video caption refers to generating a descriptive sentence for a specific short video clip automatically, which has achieved remarkable success recently. However, most of the existing methods focus more on visual information while ignoring the synchronized audio cues. We propose three multimodal deep fusion strategies to maximize the benefits of visual-audio resonance information. The first one explores the impact on cross-modalities feature fusion from low to high order. The second establishes the visual-audio short-term dependency by sharing weights of corresponding front-end networks. The third extends the temporal dependency to long-term through sharing multimodal memory across visual and audio modalities. Extensive experiments have validated the effectiveness of our three cross-modalities fusion strategies on two benchmark datasets, including Microsoft Research Video to Text (MSRVTT) and Microsoft Video Description (MSVD). It is worth mentioning that sharing weight can coordinate visual-audio feature fusion effectively and achieve the state-of-art performance on both BELU and METEOR metrics. Furthermore, we first propose a dynamic multimodal feature fusion framework to deal with the part modalities missing case. Experimental results demonstrate that even in the audio absence mode, we can still obtain comparable results with the aid of the additional audio modality inference module.