People rely on social skills like conflict resolution to communicate effectively and to thrive in both work and personal life. However, practice environments for social skills are typically out of reach for most people. How can we make social skill training more available, accessible, and inviting? Drawing upon interdisciplinary research from communication and psychology, this perspective paper identifies social skill barriers to enter specialized fields. Then we present a solution that leverages large language models for social skill training via a generic framework. Our AI Partner, AI Mentor framework merges experiential learning with realistic practice and tailored feedback. This work ultimately calls for cross-disciplinary innovation to address the broader implications for workforce development and social equality.
Link prediction with knowledge graphs has been thoroughly studied in graph machine learning, leading to a rich landscape of graph neural network architectures with successful applications. Nonetheless, it remains challenging to transfer the success of these architectures to relational hypergraphs, where the task of link prediction is over $k$-ary relations, which is substantially harder than link prediction with knowledge graphs. In this paper, we propose a framework for link prediction with relational hypergraphs, unlocking applications of graph neural networks to fully relational structures. Theoretically, we conduct a thorough analysis of the expressive power of the resulting model architectures via corresponding relational Weisfeiler-Leman algorithms and also via logical expressiveness. Empirically, we validate the power of the proposed model architectures on various relational hypergraph benchmarks. The resulting model architectures substantially outperform every baseline for inductive link prediction, and lead to state-of-the-art results for transductive link prediction.
This work studies the repeated principal-agent problem from an online learning perspective. The principal's goal is to learn the optimal contract that maximizes her utility through repeated interactions, without prior knowledge of the agent's type (i.e., the agent's cost and production functions). This work contains three technical results. First, learning linear contracts with binary outcomes is equivalent to dynamic pricing with an unknown demand curve. Second, learning an approximately optimal contract with identical agents can be accomplished with a polynomial sample complexity scheme. Third, learning the optimal contract with heterogeneous agents can be reduced to Lipschitz bandits under mild regularity conditions. The technical results demonstrate that the one-dimensional effort model, the default model for principal-agent problems in economics which seems largely ignored in recent works from the computer science community, may possibly be the more suitable choice when studying contract design from a learning perspective.
Aiming to replicate human-like dexterity, perceptual experiences, and motion patterns, we explore learning from human demonstrations using a bimanual system with multifingered hands and visuotactile data. Two significant challenges exist: the lack of an affordable and accessible teleoperation system suitable for a dual-arm setup with multifingered hands, and the scarcity of multifingered hand hardware equipped with touch sensing. To tackle the first challenge, we develop HATO, a low-cost hands-arms teleoperation system that leverages off-the-shelf electronics, complemented with a software suite that enables efficient data collection; the comprehensive software suite also supports multimodal data processing, scalable policy learning, and smooth policy deployment. To tackle the latter challenge, we introduce a novel hardware adaptation by repurposing two prosthetic hands equipped with touch sensors for research. Using visuotactile data collected from our system, we learn skills to complete long-horizon, high-precision tasks which are difficult to achieve without multifingered dexterity and touch feedback. Furthermore, we empirically investigate the effects of dataset size, sensing modality, and visual input preprocessing on policy learning. Our results mark a promising step forward in bimanual multifingered manipulation from visuotactile data. Videos, code, and datasets can be found at //toruowo.github.io/hato/ .
This paper studies a variant of the rate-distortion problem motivated by task-oriented semantic communication and distributed learning problems, where $M$ correlated sources are independently encoded for a central decoder. The decoder has access to a correlated side information in addition to the messages received from the encoders, and aims to recover a latent random variable correlated with the sources observed by the encoders within a given distortion constraint rather than recovering the sources themselves. We provide bounds on the rate-distortion region for this scenario in general, and characterize the rate-distortion function exactly when the sources are conditionally independent given the side information.
We introduce an extractive summarization system for meetings that leverages discourse structure to better identify salient information from complex multi-party discussions. Using discourse graphs to represent semantic relations between the contents of utterances in a meeting, we train a GNN-based node classification model to select the most important utterances, which are then combined to create an extractive summary. Experimental results on AMI and ICSI demonstrate that our approach surpasses existing text-based and graph-based extractive summarization systems, as measured by both classification and summarization metrics. Additionally, we conduct ablation studies on discourse structure and relation type to provide insights for future NLP applications leveraging discourse analysis theory.
Deep nonparametric regression, characterized by the utilization of deep neural networks to learn target functions, has emerged as a focal point of research attention in recent years. Despite considerable progress in understanding convergence rates, the absence of asymptotic properties hinders rigorous statistical inference. To address this gap, we propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation, leveraging the conditional diffusion model. Theoretically, we develop an end-to-end convergence rate for the conditional diffusion model and establish the asymptotic normality of the generated samples. Consequently, we are equipped to construct confidence regions, facilitating robust statistical inference. Furthermore, through numerical experiments, we empirically validate the efficacy of our proposed methodology.
Automatic weeding technologies have attained a lot of attention lately, because of the harms and challenges weeds are causing for livestock farming, in addition to that weeds reduce yields. We are targeting automatic and mechanical Rumex weeding in open pasture fields using light weight mobile field robot technologies. We describe a mobile weeding robot with GNSS navigation, 3D computer vision for weed detection, and a robot arm with a mechanical weeding tool. Our main contribution is showing the feasibility of light weight robot, sensor, and tool technologies in mechanical removal of weed seedlings.
Surveys are commonly used to facilitate research in epidemiology, health, and the social and behavioral sciences. Often, these surveys are not simple random samples, and respondents are given weights reflecting their probability of selection into the survey. It is well known that analysts can use these survey weights to produce unbiased estimates of population quantities like totals. In this article, we show that survey weights also can be beneficial for evaluating the quality of predictive models when splitting data into training and test sets. In particular, we characterize model assessment statistics, such as sensitivity and specificity, as finite population quantities, and compute survey-weighted estimates of these quantities with sample test data comprising a random subset of the original data.Using simulations with data from the National Survey on Drug Use and Health and the National Comorbidity Survey, we show that unweighted metrics estimated with sample test data can misrepresent population performance, but weighted metrics appropriately adjust for the complex sampling design. We also show that this conclusion holds for models trained using upsampling for mitigating class imbalance. The results suggest that weighted metrics should be used when evaluating performance on sample test data.
The prevalent use of benchmarks in current offline reinforcement learning (RL) research has led to a neglect of the imbalance of real-world dataset distributions in the development of models. The real-world offline RL dataset is often imbalanced over the state space due to the challenge of exploration or safety considerations. In this paper, we specify properties of imbalanced datasets in offline RL, where the state coverage follows a power law distribution characterized by skewed policies. Theoretically and empirically, we show that typically offline RL methods based on distributional constraints, such as conservative Q-learning (CQL), are ineffective in extracting policies under the imbalanced dataset. Inspired by natural intelligence, we propose a novel offline RL method that utilizes the augmentation of CQL with a retrieval process to recall past related experiences, effectively alleviating the challenges posed by imbalanced datasets. We evaluate our method on several tasks in the context of imbalanced datasets with varying levels of imbalance, utilizing the variant of D4RL. Empirical results demonstrate the superiority of our method over other baselines.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.