亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emulating chip functionality before silicon production is crucial, especially with the increasing prevalence of RISC-V-based designs. FPGAs are promising candidates for such purposes due to their high-speed and reconfigurable architecture. In this paper, we introduce our Makinote, an FPGA-based Cluster platform, hosted at Barcelona Supercomputing Center (BSC-CNS), which is composed of a large number of FPGAs (in total 96 AMD/Xilinx Alveo U55c) to emulate massive size RTL designs (up to 750M ASIC cells). In addition, we introduce our FPGA shell as a powerful tool to facilitate the utilization of such a large FPGA cluster with minimal effort needed by the designers. The proposed FPGA shell provides an easy-to-use interface for the RTL developers to rapidly port such design into several FPGAs by automatically connecting to the necessary ports, e.g., PCIe Gen4, DRAM (DDR4 and HBM), ETH10g/100g. Moreover, specific drivers for exploiting RISC-V based architectures are provided within the set of tools associated with the FPGA shell. We release the tool online for further extensions. We validate the efficiency of our hardware platform (i.e., FPGA cluster) and the software tool (i.e., FPGA Shell) by emulating a RISC-V processor and experimenting HPC Challenge application running on 32 FPGAs. Our results demonstrate that the performance improves by 8 times over the single-FPGA case.

相關內容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA現場可編程門陣列國際研討會。 Publisher:ACM。 SIT:

Symbols (or more broadly, non-natural language textual representations) such as numerical sequences, molecular formulas, and table delimiters widely exist, playing important roles in various tasks such as abstract reasoning, chemical property prediction, and table question answering. Despite the impressive natural language comprehension capabilities of large language models (LLMs), their reasoning abilities for symbols remain inadequate, which could attributed to the difference between symbol representations and general natural languages. We propose symbol-to-language (S2L), a tuning-free method that enables large language models to solve symbol-related problems with information expressed in natural language. Specifically, S2L first converts the symbols involved to language-based representations, which can be implemented by prompting LLMs or leveraging external tools, then these language-based representations are integrated into the original problem via direct substitution or concatenation, serving as useful input information for LLMs. We evaluate the S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat) models over eight symbol-related tasks, ranging from symbol-only abstract reasoning to sentiment analysis in social media. Experimental results show that S2L consistently leads to superior performance. For example, by employing S2L for GPT-4, there can be average significant improvements of +21.9% and +9.5% for subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available at //github.com/THUNLP-MT/symbol2language.

The field of emotion recognition of conversation (ERC) has been focusing on separating sentence feature encoding and context modeling, lacking exploration in generative paradigms based on unified designs. In this study, we propose a novel approach, \textbf{InstructERC}, to reformulate the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs). InstructERC makes three significant contributions: (1) it introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information. (2) We introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. (3) Pioneeringly, we unify emotion labels across benchmarks through the feeling wheel to fit real application scenarios. InstructERC still perform impressively on this unified dataset. Our LLM-based plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provides empirical guidance for applying it in practical scenarios. Our code and aligned unified dataset (UIME) can be found in the Github link.\footnote{You can find the offical realization in the Github link: //github.com/LIN-SHANG/InstructERC}

Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.

Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.

Reinforcement Learning (RL) has increasingly become a preferred method over traditional rule-based systems in diverse human-in-the-loop (HITL) applications due to its adaptability to the dynamic nature of human interactions. However, integrating RL in such settings raises significant privacy concerns, as it might inadvertently expose sensitive user information. Addressing this, our paper focuses on developing PAPER-HILT, an innovative, adaptive RL strategy through exploiting an early-exit approach designed explicitly for privacy preservation in HITL environments. This approach dynamically adjusts the tradeoff between privacy protection and system utility, tailoring its operation to individual behavioral patterns and preferences. We mainly highlight the challenge of dealing with the variable and evolving nature of human behavior, which renders static privacy models ineffective. PAPER-HILT's effectiveness is evaluated through its application in two distinct contexts: Smart Home environments and Virtual Reality (VR) Smart Classrooms. The empirical results demonstrate PAPER-HILT's capability to provide a personalized equilibrium between user privacy and application utility, adapting effectively to individual user needs and preferences. On average for both experiments, utility (performance) drops by 24%, and privacy (state prediction) improves by 31%.

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

Pre-training has been investigated to improve the efficiency and performance of training neural operators in data-scarce settings. However, it is largely in its infancy due to the inherent complexity and diversity, such as long trajectories, multiple scales and varying dimensions of partial differential equations (PDEs) data. In this paper, we present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data and generalizes to various downstream tasks. Moreover, by designing a flexible and scalable model architecture based on Fourier attention, we can easily scale up the model for large-scale pre-training. We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories. Extensive experiments show that we achieve SOTA on these benchmarks and validate the strong generalizability of our model to significantly enhance performance on diverse downstream PDE tasks like 3D data. Code is available at \url{//github.com/thu-ml/DPOT}.

Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司