亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) are competitive with the state of the art on a wide range of sentence-level translation datasets. However, their ability to translate paragraphs and documents remains unexplored because evaluation in these settings is costly and difficult. We show through a rigorous human evaluation that asking the Gpt-3.5 (text-davinci-003) LLM to translate an entire literary paragraph (e.g., from a novel) at once results in higher-quality translations than standard sentence-by-sentence translation across 18 linguistically-diverse language pairs (e.g., translating into and out of Japanese, Polish, and English). Our evaluation, which took approximately 350 hours of effort for annotation and analysis, is conducted by hiring translators fluent in both the source and target language and asking them to provide both span-level error annotations as well as preference judgments of which system's translations are better. We observe that discourse-level LLM translators commit fewer mistranslations, grammar errors, and stylistic inconsistencies than sentence-level approaches. With that said, critical errors still abound, including occasional content omissions, and a human translator's intervention remains necessary to ensure that the author's voice remains intact. We publicly release our dataset and error annotations to spur future research on evaluation of document-level literary translation.

相關內容

Large language models of artificial intelligence (AI) such as ChatGPT find remarkable but controversial applicability in science and research. This paper reviews epistemological challenges, ethical and integrity risks in science conduct. This is with the aim to lay new timely foundations for a high-quality research ethics review in the era of AI. The role of AI language models as a research instrument and subject is scrutinized along with ethical implications for scientists, participants and reviewers. Ten recommendations shape a response for a more responsible research conduct with AI language models.

Existing cross-lingual transfer (CLT) prompting methods are only concerned with monolingual demonstration examples in the source language. In this paper, we propose In-CLT, a novel cross-lingual transfer prompting method that leverages both source and target languages to construct the demonstration examples. We conduct comprehensive evaluations on multilingual benchmarks, focusing on question answering tasks. Experiment results show that In-CLT prompt not only improves multilingual models' cross-lingual transferability, but also demonstrates remarkable unseen language generalization ability. In-CLT prompting, in particular, improves model performance by 10 to 20\% points on average when compared to prior cross-lingual transfer approaches. We also observe the surprising performance gain on the other multilingual benchmarks, especially in reasoning tasks. Furthermore, we investigate the relationship between lexical similarity and pre-training corpora in terms of the cross-lingual transfer gap.

Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a novel method, named Para-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to paraphrase a single reference into multiple high-quality ones in diverse expressions. Experimental results on representative NLG tasks of machine translation, text summarization, and image caption demonstrate that our method can effectively improve the correlation with human evaluation for sixteen automatic evaluation metrics by +7.82% in ratio. We release the code and data at //github.com/RUCAIBox/Para-Ref.

Large language models (LLMs) struggle on processing complicated observations in interactive decision making. To alleviate this issue, we propose a simple hierarchical prompting approach. Diverging from previous prompting approaches that always put the \emph{full} observation~(\eg a web page) to the prompt, we propose to first construct an action-aware observation which is more \emph{condensed} and \emph{relevant} with a dedicated \summ prompt. The \actor prompt then predicts the next action based on the summarized history. While our method has broad applicability, we particularly demonstrate its efficacy in the complex domain of web navigation where a full observation often contains redundant and irrelevant information. Our approach outperforms the previous state-of-the-art prompting mechanism with the same LLM by 6.2\% on task success rate, demonstrating its potential on interactive decision making tasks with long observation traces.

Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets.

Natural language provides a natural interface for human communication, yet it is challenging for robots to comprehend due to its abstract nature and inherent ambiguity. Large language models (LLMs) contain commonsense knowledge that can help resolve language ambiguity and generate possible solutions to abstract specifications. While LLMs have shown promise as few-shot planning policies, their potential for planning complex tasks is not fully tapped. This paper shows that LLMs can be used as both the commonsense model of the world and the heuristic policy in search algorithms such as Monte Carlo Tree Search (MCTS). MCTS explores likely world states sampled from LLMs to facilitate better-reasoned decision-making. The commonsense policy from LLMs guides the search to relevant parts of the tree, substantially reducing the search complexity. We demonstrate the effectiveness of our method in daily task-planning experiments and highlight its advantages over using LLMs solely as policies.

Recently, large pretrained language models have demonstrated strong language understanding capabilities. This is particularly reflected in their zero-shot and in-context learning abilities on downstream tasks through prompting. To assess their impact on spoken language understanding (SLU), we evaluate several such models like ChatGPT and OPT of different sizes on multiple benchmarks. We verify the emergent ability unique to the largest models as they can reach intent classification accuracy close to that of supervised models with zero or few shots on various languages given oracle transcripts. By contrast, the results for smaller models fitting a single GPU fall far behind. We note that the error cases often arise from the annotation scheme of the dataset; responses from ChatGPT are still reasonable. We show, however, that the model is worse at slot filling, and its performance is sensitive to ASR errors, suggesting serious challenges for the application of those textual models on SLU.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

北京阿比特科技有限公司