亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this survey, we present in a unified way the categorical and syntactical settings of coherent differentiation introduced recently, which shows that the basic ideas of differential linear logic and of the differential lambda-calculus are compatible with determinism. Indeed, due to the Leibniz rule of the differential calculus, differential linear logic and the differential lambda-calculus feature an operation of addition of proofs or terms operationally interpreted as a strong form of nondeterminism. The main idea of coherent differentiation is that these sums can be controlled and kept in the realm of determinism by means of a notion of summability, upon enforcing summability restrictions on the derivatives which can be written in the models and in the syntax.

相關內容

We present a new adaptive algorithm for learning discrete distributions under distribution drift. In this setting, we observe a sequence of independent samples from a discrete distribution that is changing over time, and the goal is to estimate the current distribution. Since we have access to only a single sample for each time step, a good estimation requires a careful choice of the number of past samples to use. To use more samples, we must resort to samples further in the past, and we incur a drift error due to the bias introduced by the change in distribution. On the other hand, if we use a small number of past samples, we incur a large statistical error as the estimation has a high variance. We present a novel adaptive algorithm that can solve this trade-off without any prior knowledge of the drift. Unlike previous adaptive results, our algorithm characterizes the statistical error using data-dependent bounds. This technicality enables us to overcome the limitations of the previous work that require a fixed finite support whose size is known in advance and that cannot change over time. Additionally, we can obtain tighter bounds depending on the complexity of the drifting distribution, and also consider distributions with infinite support.

In this work, the uncertainty associated with the finite element discretization error is modeled following the Bayesian paradigm. First, a continuous formulation is derived, where a Gaussian process prior over the solution space is updated based on observations from a finite element discretization. To avoid the computation of intractable integrals, a second, finer, discretization is introduced that is assumed sufficiently dense to represent the true solution field. A prior distribution is assumed over the fine discretization, which is then updated based on observations from the coarse discretization. This yields a posterior distribution with a mean that serves as an estimate of the solution, and a covariance that models the uncertainty associated with this estimate. Two particular choices of prior are investigated: a prior defined implicitly by assigning a white noise distribution to the right-hand side term, and a prior whose covariance function is equal to the Green's function of the partial differential equation. The former yields a posterior distribution with a mean close to the reference solution, but a covariance that contains little information regarding the finite element discretization error. The latter, on the other hand, yields posterior distribution with a mean equal to the coarse finite element solution, and a covariance with a close connection to the discretization error. For both choices of prior a contradiction arises, since the discretization error depends on the right-hand side term, but the posterior covariance does not. We demonstrate how, by rescaling the eigenvalues of the posterior covariance, this independence can be avoided.

In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size $\gamma$ and momentum parameter $\beta$ that allows us to identify an intrinsic quantity $\lambda = \frac{ \gamma }{ (1 - \beta)^2 }$ which uniquely defines the optimisation path and provides a simple acceleration rule. When training a $2$-layer diagonal linear network in an overparametrised regression setting, we characterise the recovered solution through an implicit regularisation problem. We then prove that small values of $\lambda$ help to recover sparse solutions. Finally, we give similar but weaker results for stochastic momentum gradient descent. We provide numerical experiments which support our claims.

We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors where the vector of coefficients can vary from sparse to dense. In this setting, we propose a combination of probabilistic variable screening with random projection tools as a viable approach. More specifically, we introduce a new data-driven random projection tailored to the problem at hand and derive a theoretical bound on the gain in expected prediction error over conventional random projections. The variables to enter the projection are screened by accounting for predictor correlation. To reduce the dependence on fine-tuning choices, we aggregate over an ensemble of linear models. A thresholding parameter is introduced to obtain a higher degree of sparsity. Both this parameter and the number of models in the ensemble can be chosen by cross-validation. In extensive simulations, we compare the proposed method with other random projection tools and with classical sparse and dense methods and show that it is competitive in terms of prediction across a variety of scenarios with different sparsity and predictor covariance settings. We also show that the method with cross-validation is able to rank the variables satisfactorily. Finally, we showcase the method on two real data applications.

In this work, we present the first algorithm to compute expander decompositions in an $m$-edge directed graph with near-optimal time $\tilde{O}(m)$. Further, our algorithm can maintain such a decomposition in a dynamic graph and again obtains near-optimal update times. Our result improves over previous algorithms of Bernstein-Probst Gutenberg-Saranurak (FOCS 2020), Hua-Kyng-Probst Gutenberg-Wu (SODA 2023) that only obtained algorithms optimal up to subpolynomial factors. At the same time, our algorithm is much simpler and more accessible than previous work. In order to obtain our new algorithm, we present a new push-pull-relabel flow framework that generalizes the classic push-relabel flow algorithm of Goldberg-Tarjan (JACM 1988), which was later dynamized for computing expander decompositions in undirected graphs by Henzinger-Rao-Wang (SIAM J. Comput. 2020), Saranurak-Wang (SODA 2019). We then show that the flow problems formulated in recent work of Hua-Kyng-Probst Gutenberg-Wu (SODA 2023) to decompose directed graphs can be solved much more efficiently in the push-pull-relabel flow framework.

This study addresses the challenges in parameter estimation of stochastic differential equations driven by non-Gaussian noises, which are critical in understanding dynamic phenomena such as price fluctuations and the spread of infectious diseases. Previous research highlighted the potential of LSTM networks in estimating parameters of alpha stable Levy driven SDEs but faced limitations including high time complexity and constraints of the LSTM chaining property. To mitigate these issues, we introduce the PEnet, a novel CNN-LSTM-based three-stage model that offers an end to end approach with superior accuracy and adaptability to varying data structures, enhanced inference speed for long sequence observations through initial data feature condensation by CNN, and high generalization capability, allowing its application to various complex SDE scenarios. Experiments on synthetic datasets confirm PEnet significant advantage in estimating SDE parameters associated with noise characteristics, establishing it as a competitive method for SDE parameter estimation in the presence of Levy noise.

In this paper, we propose new techniques for solving geometric optimization problems involving interpoint distances of a point set in the plane. Given a set $P$ of $n$ points in the plane and an integer $1 \leq k \leq \binom{n}{2}$, the distance selection problem is to find the $k$-th smallest interpoint distance among all pairs of points of $P$. The previously best deterministic algorithm solves the problem in $O(n^{4/3} \log^2 n)$ time [Katz and Sharir, SIAM J. Comput. 1997 and SoCG 1993]. In this paper, we improve their algorithm to $O(n^{4/3} \log n)$ time. Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided discrete Fr\'{e}chet distance with shortcuts problem for two point sets in the plane. For the two-sided problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz, and Sharir, ACM Trans. Algorithms 2015 and SoCG 2014] by a factor of roughly $\log^2(m+n)$ (resp., $(m+n)^{\epsilon}$), where $m$ and $n$ are the sizes of the two input point sets, respectively. Other problems whose solutions can be improved by our techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite general and we believe they will find many other applications in future.

In this article we introduce an algorithm for mitigating the adverse effects of noise on gradient descent in variational quantum algorithms. This is accomplished by computing a {\emph{regularized}} local classical approximation to the objective function at every gradient descent step. The computational overhead of our algorithm is entirely classical, i.e., the number of circuit evaluations is exactly the same as when carrying out gradient descent using the parameter-shift rules. We empirically demonstrate the advantages offered by our algorithm on randomized parametrized quantum circuits.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司