亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Algorithms with predictions is a recent framework that has been used to overcome pessimistic worst-case bounds in incomplete information settings. In the context of scheduling, very recent work has leveraged machine-learned predictions to design algorithms that achieve improved approximation ratios in settings where the processing times of the jobs are initially unknown. In this paper, we study the speed-robust scheduling problem where the speeds of the machines, instead of the processing times of the jobs, are unknown and augment this problem with predictions. Our main result is an algorithm that achieves a $\min\{\eta^2(1+\alpha), (2 + 2/\alpha)\}$ approximation, for any $\alpha \in (0,1)$, where $\eta \geq 1$ is the prediction error. When the predictions are accurate, this approximation outperforms the best known approximation for speed-robust scheduling without predictions of $2-1/m$, where $m$ is the number of machines, while simultaneously maintaining a worst-case approximation of $2 + 2/\alpha$ even when the predictions are arbitrarily wrong. In addition, we obtain improved approximations for three special cases: equal job sizes, infinitesimal job sizes, and binary machine speeds. We also complement our algorithmic results with lower bounds. Finally, we empirically evaluate our algorithm against existing algorithms for speed-robust scheduling.

相關內容

Clustering is an unsupervised learning task that aims to partition data into a set of clusters. In many applications, these clusters correspond to real-world constructs (e.g. electoral districts) whose benefit can only be attained by groups when they reach a minimum level of representation (e.g. 50\% to elect their desired candidate). This paper considers the problem of performing k-means clustering while ensuring groups (e.g. demographic groups) have that minimum level of representation in a specified number of clusters. We show that the popular $k$-means algorithm, Lloyd's algorithm, can result in unfair outcomes where certain groups lack sufficient representation past the minimum threshold in a proportional number of clusters. We formulate the problem through a mixed-integer optimization framework and present a variant of Lloyd's algorithm, called MiniReL, that directly incorporates the fairness constraints. We show that incorporating the fairness criteria leads to a NP-Hard sub-problem within Lloyd's algorithm, but we provide computational approaches that make the problem tractable for even large datasets. Numerical results show that the approach is able to create fairer clusters with practically no increase in the k-means clustering cost across standard benchmark datasets.

Empirical risk minimization (ERM) is known in practice to be non-robust to distributional shift where the training and the test distributions are different. A suite of approaches, such as importance weighting, and variants of distributionally robust optimization (DRO), have been proposed to solve this problem. But a line of recent work has empirically shown that these approaches do not significantly improve over ERM in real applications with distribution shift. The goal of this work is to obtain a comprehensive theoretical understanding of this intriguing phenomenon. We first posit the class of Generalized Reweighting (GRW) algorithms, as a broad category of approaches that iteratively update model parameters based on iterative reweighting of the training samples. We show that when overparameterized models are trained under GRW, the resulting models are close to that obtained by ERM. We also show that adding small regularization which does not greatly affect the empirical training accuracy does not help. Together, our results show that a broad category of what we term GRW approaches are not able to achieve distributionally robust generalization. Our work thus has the following sobering takeaway: to make progress towards distributionally robust generalization, we either have to develop non-GRW approaches, or perhaps devise novel classification/regression loss functions that are adapted to the class of GRW approaches.

Generalized correlation analysis (GCA) is concerned with uncovering linear relationships across multiple datasets. It generalizes canonical correlation analysis that is designed for two datasets. We study sparse GCA when there are potentially multiple generalized correlation tuples in data and the loading matrix has a small number of nonzero rows. It includes sparse CCA and sparse PCA of correlation matrices as special cases. We first formulate sparse GCA as generalized eigenvalue problems at both population and sample levels via a careful choice of normalization constraints. Based on a Lagrangian form of the sample optimization problem, we propose a thresholded gradient descent algorithm for estimating GCA loading vectors and matrices in high dimensions. We derive tight estimation error bounds for estimators generated by the algorithm with proper initialization. We also demonstrate the prowess of the algorithm on a number of synthetic datasets.

We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems. Specifically, we design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit, integrating learnable lateral competition and elements of predictive coding, an emerging and viable neurobiological process theory of cortical function, with the forward-forward (FF) adaptation scheme. Furthermore, PFF efficiently learns to propagate learning signals and updates synapses with forward passes only, eliminating key structural and computational constraints imposed by a backpropagation-based scheme. Besides computational advantages, the PFF process could prove useful for understanding the learning mechanisms behind biological neurons that use local signals despite missing feedback connections. We run experiments on image data and demonstrate that the PFF procedure works as well as backpropagation of errors, offering a promising brain-inspired learning algorithm for classifying, reconstructing, and synthesizing data patterns.

In defect prediction community, many defect prediction models have been proposed and indeed more new models are continuously being developed. However, there is no consensus on how to evaluate the performance of a newly proposed model. In this paper, we aim to propose MATTER, a fraMework towArd a consisTenT pErformance compaRison, which makes model performance directly comparable across different studies. We take three actions to build a consistent evaluation framework for defect prediction models. First, we propose a simple and easy-to-use unsupervised baseline model ONE (glObal baseliNe modEl) to provide "a single point of comparison". Second, we propose using the SQA-effort-aligned threshold setting to make a fair comparison. Third, we suggest reporting the evaluation results in a unified way and provide a set of core performance indicators for this purpose, thus enabling an across-study comparison to attain real progress. The experimental results show that MATTER can serve as an effective framework to support a consistent performance evaluation for defect prediction models and hence can help determine whether a newly proposed defect prediction model is practically useful for practitioners and inform the real progress in the road of defect prediction. Furthermore, when applying MATTER to evaluate the representative defect prediction models proposed in recent years, we find that most of them (if not all) are not superior to the simple baseline model ONE in terms of the SQA-effort awareness prediction performance. This reveals that the real progress in defect prediction has been overestimated. We hence recommend that, in future studies, when any new defect prediction model is proposed, MATTER should be used to evaluate its actual usefulness (on the same benchmark test data sets) to advance scientific progress in defect prediction.

Gradient coding schemes effectively mitigate full stragglers in distributed learning by introducing identical redundancy in coded local partial derivatives corresponding to all model parameters. However, they are no longer effective for partial stragglers as they cannot utilize incomplete computation results from partial stragglers. This paper aims to design a new gradient coding scheme for mitigating partial stragglers in distributed learning. Specifically, we consider a distributed system consisting of one master and N workers, characterized by a general partial straggler model and focuses on solving a general large-scale machine learning problem with L model parameters using gradient coding. First, we propose a coordinate gradient coding scheme with L coding parameters representing L possibly different diversities for the L coordinates, which generates most gradient coding schemes. Then, we consider the minimization of the expected overall runtime and the maximization of the completion probability with respect to the L coding parameters for coordinates, which are challenging discrete optimization problems. To reduce computational complexity, we first transform each to an equivalent but much simpler discrete problem with N\llL variables representing the partition of the L coordinates into N blocks, each with identical redundancy. This indicates an equivalent but more easily implemented block coordinate gradient coding scheme with N coding parameters for blocks. Then, we adopt continuous relaxation to further reduce computational complexity. For the resulting minimization of expected overall runtime, we develop an iterative algorithm of computational complexity O(N^2) to obtain an optimal solution and derive two closed-form approximate solutions both with computational complexity O(N). For the resultant maximization of the completion probability, we develop an iterative algorithm of...

Display Ads and the generalized assignment problem are two well-studied online packing problems with important applications in ad allocation and other areas. In both problems, ad impressions arrive online and have to be allocated immediately to budget-constrained advertisers. Worst-case algorithms that achieve the ideal competitive ratio are known, but might act overly conservative given the predictable and usually tame nature of real-world input. Given this discrepancy, we develop an algorithm for both problems that incorporate machine-learned predictions and can thus improve the performance beyond the worst-case. Our algorithm is based on the work of Feldman et al. (2009) and similar in nature to Mahdian et al. (2007) who were the first to develop a learning-augmented algorithm for the related, but more structured Ad Words problem. We use a novel analysis to show that our algorithm is able to capitalize on a good prediction, while being robust against poor predictions. We experimentally evaluate our algorithm on synthetic and real-world data on a wide range of predictions. Our algorithm is consistently outperforming the worst-case algorithm without predictions.

Mortality patterns at a subnational level or across subpopulations are often used to examine the health of a population or for designing health policies. In large populations, the estimation of mortality indicators is rather straightforward. In small populations, however, death counts are driven by stochastic variation. In order to deal with this problem, demographers have proposed a variety of methods which all make use of knowledge about the shape of human mortality schedules. In practice, it is not readily clear how the methods relate to each other hindering informed decisions when choosing a method. We aim to provide guidance. First, we review recent demographic methods for the estimation of mortality schedules in small populations - emphasizing data requirements and ease of use. Second, by means of a simulation study, we evaluate the performance of three main classes of methods with respect to exposure size as well as sensitivity to the incorporated demographic knowledge. Often neglected by previous studies, we show that there is considerable variability in the performance across ages and regions and that this performance can depend on the choice of incorporated demographic knowledge.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司