亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Location information is pivotal for the automation and intelligence of terminal devices and edge-cloud IoT systems, such as autonomous vehicles and augmented reality. However, achieving reliable positioning across diverse IoT applications remains challenging due to significant training costs and the necessity of densely collected data. To tackle these issues, we have innovatively applied the selective state space (SSM) model to visual localization, introducing a new model named MambaLoc. The proposed model demonstrates exceptional training efficiency by capitalizing on the SSM model's strengths in efficient feature extraction, rapid computation, and memory optimization, and it further ensures robustness in sparse data environments due to its parameter sparsity. Additionally, we propose the Global Information Selector (GIS), which leverages selective SSM to implicitly achieve the efficient global feature extraction capabilities of Non-local Neural Networks. This design leverages the computational efficiency of the SSM model alongside the Non-local Neural Networks' capacity to capture long-range dependencies with minimal layers. Consequently, the GIS enables effective global information capture while significantly accelerating convergence. Our extensive experimental validation using public indoor and outdoor datasets first demonstrates our model's effectiveness, followed by evidence of its versatility with various existing localization models. Our code and models are publicly available to support further research and development in this area.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Networking · · 樣本 · 泛函 ·
2024 年 10 月 1 日

The ability of a peer-to-peer (P2P) system to effectively host decentralized applications often relies on the availability of a peer-sampling service, which provides each participant with a random sample of other peers. Despite the practical effectiveness of existing peer samplers, their ability to produce random samples within a reasonable time frame remains poorly understood from a theoretical standpoint. This paper contributes to bridging this gap by introducing PeerSwap, a peer-sampling protocol with provable randomness guarantees. We establish execution time bounds for PeerSwap, demonstrating its ability to scale effectively with the network size. We prove that PeerSwap maintains the fixed structure of the communication graph while allowing sequential peer position swaps within this graph. We do so by showing that PeerSwap is a specific instance of an interchange process, a renowned model for particle movement analysis. Leveraging this mapping, we derive execution time bounds, expressed as a function of the network size N. Depending on the network structure, this time can be as low as a polylogarithmic function of N, highlighting the efficiency of PeerSwap. We implement PeerSwap and conduct numerical evaluations using regular graphs with varying connectivity and containing up to 32768 (2^15) peers. Our evaluation demonstrates that PeerSwap quickly provides peers with uniform random samples of other peers.

The presence of motion artifacts in magnetic resonance imaging (MRI) scans poses a significant challenge, where even minor patient movements can lead to artifacts that may compromise the scan's utility.This paper introduces MAsked MOtion Correction (MAMOC), a novel method designed to address the issue of Retrospective Artifact Correction (RAC) in motion-affected MRI brain scans. MAMOC uses masked autoencoding self-supervision, transfer learning and test-time prediction to efficiently remove motion artifacts, producing high-fidelity, native-resolution scans. Until recently, realistic, openly available paired artifact presentations for training and evaluating retrospective motion correction methods did not exist, making it necessary to simulate motion artifacts. Leveraging the MR-ART dataset and bigger unlabeled datasets (ADNI, OASIS-3, IXI), this work is the first to evaluate motion correction in MRI scans using real motion data on a public dataset, showing that MAMOC achieves improved performance over existing motion correction methods.

Integrating cognitive ergonomics with LLMs is crucial for improving safety, reliability, and user satisfaction in human-AI interactions. Current LLM designs often lack this integration, resulting in systems that may not fully align with human cognitive capabilities and limitations. This oversight exacerbates biases in LLM outputs and leads to suboptimal user experiences due to inconsistent application of user-centered design principles. Researchers are increasingly leveraging NLP, particularly LLMs, to model and understand human behavior across social sciences, psychology, psychiatry, health, and neuroscience. Our position paper explores the need to integrate cognitive ergonomics into LLM design, providing a comprehensive framework and practical guidelines for ethical development. By addressing these challenges, we aim to advance safer, more reliable, and ethically sound human-AI interactions.

SLAM is a fundamental capability of unmanned systems, with LiDAR-based SLAM gaining widespread adoption due to its high precision. Current SLAM systems can achieve centimeter-level accuracy within a short period. However, there are still several challenges when dealing with largescale mapping tasks including significant storage requirements and difficulty of reusing the constructed maps. To address this, we first design an elastic and lightweight map representation called CELLmap, composed of several CELLs, each representing the local map at the corresponding location. Then, we design a general backend including CELL-based bidirectional registration module and loop closure detection module to improve global map consistency. Our experiments have demonstrated that CELLmap can represent the precise geometric structure of large-scale maps of KITTI dataset using only about 60 MB. Additionally, our general backend achieves up to a 26.88% improvement over various LiDAR odometry methods.

With the rapid development of IT operations, it has become increasingly crucial to efficiently manage and analyze large volumes of data for practical applications. The techniques of Natural Language Processing (NLP) have shown remarkable capabilities for various tasks, including named entity recognition, machine translation and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various NLP downstream tasks. However, there is a lack of specialized LLMs for IT operations. In this paper, we introduce the OWL, a large language model trained on our collected OWL-Instruct dataset with a wide range of IT-related information, where the mixture-of-adapter strategy is proposed to improve the parameter-efficient tuning across different domains or tasks. Furthermore, we evaluate the performance of our OWL on the OWL-Bench established by us and open IT-related benchmarks. OWL demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.

北京阿比特科技有限公司