亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Classic mechanism design often assumes that a bidder's action is restricted to report a type or a signal, possibly untruthfully. In today's digital economy, bidders are holding increasing amount of private information about the auctioned items. And due to legal or ethical concerns, they would demand to reveal partial but truthful information, as opposed to report untrue signal or misinformation. To accommodate such bidder behaviors in auction design, we propose and study a novel mechanism design setup where each bidder holds two kinds of information: (1) private \emph{value type}, which can be misreported; (2) private \emph{information variable}, which the bidder may want to conceal or partially reveal, but importantly, \emph{not} to misreport. We show that in this new setup, it is still possible to design mechanisms that are both \emph{Incentive and Information Compatible} (IIC). We develop two different black-box transformations, which convert any mechanism $\mathcal{M}$ for classic bidders to a mechanism $\mathcal{M}'$ for strategically reticent bidders, based on either outcome of expectation or expectation of outcome, respectively. We identify properties of the original mechanism $\mathcal{M}$ under which the transformation leads to IIC mechanisms $\mathcal{M}'$. Interestingly, as corollaries of these results, we show that running VCG with expected bidder values maximizes welfare whereas the mechanism using expected outcome of Myerson's auction maximizes revenue. Finally, we study how regulation on the auctioneer's usage of information may lead to more robust mechanisms.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INTERACT · 約束 · 估計誤差 · INFORMS ·
2021 年 10 月 29 日

We consider the problem of estimating a $d$-dimensional discrete distribution from its samples observed under a $b$-bit communication constraint. In contrast to most previous results that largely focus on the global minimax error, we study the local behavior of the estimation error and provide \emph{pointwise} bounds that depend on the target distribution $p$. In particular, we show that the $\ell_2$ error decays with $O\left(\frac{\lVert p\rVert_{1/2}}{n2^b}\vee \frac{1}{n}\right)$ (In this paper, we use $a\vee b$ and $a \wedge b$ to denote $\max(a, b)$ and $\min(a,b)$ respectively.) when $n$ is sufficiently large, hence it is governed by the \emph{half-norm} of $p$ instead of the ambient dimension $d$. For the achievability result, we propose a two-round sequentially interactive estimation scheme that achieves this error rate uniformly over all $p$. Our scheme is based on a novel local refinement idea, where we first use a standard global minimax scheme to localize $p$ and then use the remaining samples to locally refine our estimate. We also develop a new local minimax lower bound with (almost) matching $\ell_2$ error, showing that any interactive scheme must admit a $\Omega\left( \frac{\lVert p \rVert_{{(1+\delta)}/{2}}}{n2^b}\right)$ $\ell_2$ error for any $\delta > 0$. The lower bound is derived by first finding the best parametric sub-model containing $p$, and then upper bounding the quantized Fisher information under this model. Our upper and lower bounds together indicate that the $\mathcal{H}_{1/2}(p) = \log(\lVert p \rVert_{{1}/{2}})$ bits of communication is both sufficient and necessary to achieve the optimal (centralized) performance, where $\mathcal{H}_{{1}/{2}}(p)$ is the R\'enyi entropy of order $2$. Therefore, under the $\ell_2$ loss, the correct measure of the local communication complexity at $p$ is its R\'enyi entropy.

Examinations of any experiment involving living organisms require justifications of the need and moral defensibleness of the study. Statistical planning, design and sample size calculation of the experiment are no less important review criteria than general medical and ethical points to consider. Errors made in the statistical planning and data evaluation phase can have severe consequences on both results and conclusions. They might proliferate and thus impact future trials-an unintended outcome of fundamental research with profound ethical consequences. Therefore, any trial must be efficient in both a medical and statistical way in answering the questions of interests to be considered as approvable. Unified statistical standards are currently missing for animal review boards in Germany. In order to accompany, we developed a biometric form to be filled and handed in with the proposal at the local authority on animal welfare. It addresses relevant points to consider for biostatistical planning of animal experiments and can help both the applicants and the reviewers in overseeing the entire experiment(s) planned. Furthermore, the form might also aid in meeting the current standards set by the 3+3R's principle of animal experimentation Replacement, Reduction, Refinement as well as Robustness, Registration and Reporting. The form has already been in use by the local authority of animal welfare in Berlin, Germany. In addition, we provide reference to our user guide giving more detailed explanation and examples for each section of the biometric form. Unifying the set of biostatistical aspects will help both the applicants and the reviewers to equal standards and increase quality of preclinical research projects, also for translational, multicenter, or international studies.

We introduce the multi-dimensional Skellam mechanism, a discrete differential privacy mechanism based on the difference of two independent Poisson random variables. To quantify its privacy guarantees, we analyze the privacy loss distribution via a numerical evaluation and provide a sharp bound on the R\'enyi divergence between two shifted Skellam distributions. While useful in both centralized and distributed privacy applications, we investigate how it can be applied in the context of federated learning with secure aggregation under communication constraints. Our theoretical findings and extensive experimental evaluations demonstrate that the Skellam mechanism provides the same privacy-accuracy trade-offs as the continuous Gaussian mechanism, even when the precision is low. More importantly, Skellam is closed under summation and sampling from it only requires sampling from a Poisson distribution -- an efficient routine that ships with all machine learning and data analysis software packages. These features, along with its discrete nature and competitive privacy-accuracy trade-offs, make it an attractive practical alternative to the newly introduced discrete Gaussian mechanism.

We study the query version of constrained minimum link paths between two points inside a simple polygon $P$ with $n$ vertices such that there is at least one point on the path, visible from a query point. The method is based on partitioning $P$ into a number of faces of equal link distance from a point, called a link-based shortest path map (SPM). Initially, we solve this problem for two given points $s$, $t$ and a query point $q$. Then, the proposed solution is extended to a general case for three arbitrary query points $s$, $t$ and $q$. In the former, we propose an algorithm with $O(n)$ preprocessing time. Extending this approach for the latter case, we develop an algorithm with $O(n^3)$ preprocessing time. The link distance of a $q$-$visible$ path between $s$, $t$ as well as the path are provided in time $O(\log n)$ and $O(m+\log n)$, respectively, for the above two cases, where $m$ is the number of links.

We consider the problem of approximating the arboricity of a graph $G= (V,E)$, which we denote by $\mathsf{arb}(G)$, in sublinear time, where the arboricity of a graph is the minimal number of forests required to cover its edges. An algorithm for this problem may perform degree and neighbor queries, and is allowed a small error probability. We design an algorithm that outputs an estimate $\hat{\alpha}$, such that with probability $1-1/\textrm{poly}(n)$, $\mathsf{arb}(G)/c\log^2 n \leq \hat{\alpha} \leq \mathsf{arb}(G)$, where $n=|V|$ and $c$ is a constant. The expected query complexity and running time of the algorithm are $O(n/\mathsf{arb}(G))\cdot \textrm{poly}(\log n)$, and this upper bound also holds with high probability. %($\widetilde{O}(\cdot)$ is used to suppress $\textrm{poly}(\log n)$ dependencies). This bound is optimal for such an approximation up to a $\textrm{poly}(\log n)$ factor.

Graphs (networks) are an important tool to model data in different domains. Real-world graphs are usually directed, where the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network $G$ and a vertex $r \in V(G)$, we propose an exact algorithm to compute betweenness score of $r$. Our algorithm pre-computes a set $\mathcal{RV}(r)$, which is used to prune a huge amount of computations that do not contribute to the betweenness score of $r$. Time complexity of our algorithm depends on $|\mathcal{RV}(r)|$ and it is respectively $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|)$ and $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|+|\mathcal{RV}(r)|\cdot|V(G)|\log |V(G)|)$ for unweighted graphs and weighted graphs with positive weights. $|\mathcal{RV}(r)|$ is bounded from above by $|V(G)|-1$ and in most cases, it is a small constant. Then, for the cases where $\mathcal{RV}(r)$ is large, we present a simple randomized algorithm that samples from $\mathcal{RV}(r)$ and performs computations for only the sampled elements. We show that this algorithm provides an $(\epsilon,\delta)$-approximation to the betweenness score of $r$. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that for estimating betweenness score of a single vertex, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also reveal that our algorithm improves the existing algorithms when someone is interested in computing betweenness values of the vertices in a set whose cardinality is very small.

Automatically describing images using natural sentences is an important task to support visually impaired people's inclusion onto the Internet. It is still a big challenge that requires understanding the relation of the objects present in the image and their attributes and actions they are involved in. Then, visual interpretation methods are needed, but linguistic models are also necessary to verbally describe the semantic relations. This problem is known as Image Captioning. Although many datasets were proposed in the literature, the majority contains only English captions, whereas datasets with captions described in other languages are scarce. Recently, a movement called PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Thus, inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images. Further, the captions in our dataset bring additional challenges to the problem: first, in contrast to popular datasets such as MS COCO Captions, #PraCegoVer has only one reference to each image; also, both mean and variance of our reference sentence length are significantly greater than those in the MS COCO Captions. These two characteristics contribute to making our dataset interesting due to the linguistic aspect and the challenges that it introduces to the image captioning problem. We publicly-share the dataset at //github.com/gabrielsantosrv/PraCegoVer.

This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.

In this paper we propose a new conditional GAN for image captioning that enforces semantic alignment between images and captions through a co-attentive discriminator and a context-aware LSTM sequence generator. In order to train these sequence GANs, we empirically study two algorithms: Self-critical Sequence Training (SCST) and Gumbel Straight-Through. Both techniques are confirmed to be viable for training sequence GANs. However, SCST displays better gradient behavior despite not directly leveraging gradients from the discriminator. This ensures a stronger stability of sequence GANs training and ultimately produces models with improved results under human evaluation. Automatic evaluation of GAN trained captioning models is an open question. To remedy this, we introduce a new semantic score with strong correlation to human judgement. As a paradigm for evaluation, we suggest that the generalization ability of the captioner to Out of Context (OOC) scenes is an important criterion to assess generalization and composition. To this end, we propose an OOC dataset which, combined with our automatic metric of semantic score, is a new benchmark for the captioning community to measure the generalization ability of automatic image captioning. Under this new OOC benchmark, and on the traditional MSCOCO dataset, our models trained with SCST have strong performance in both semantic score and human evaluation.

The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.

北京阿比特科技有限公司