亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Privacy policies inform users about the data management practices of organizations. Yet, their complexity often renders them largely incomprehensible to the average user, necessitating the development of privacy assistants. With the advent of generative AI (genAI) technologies, there is an untapped potential to enhance privacy assistants in answering user queries effectively. However, the reliability of genAI remains a concern due to its propensity for generating incorrect or misleading information. This study introduces GenAIPABench, a novel benchmarking framework designed to evaluate the performance of Generative AI-based Privacy Assistants (GenAIPAs). GenAIPABench comprises: 1) A comprehensive set of questions about an organization's privacy policy and a data protection regulation, along with annotated answers for several organizations and regulations; 2) A robust set of evaluation metrics for assessing the accuracy, relevance, and consistency of the generated responses; and 3) An evaluation tool that generates appropriate prompts to introduce the system to the privacy document and different variations of the privacy questions to evaluate its robustness. We use GenAIPABench to assess the potential of three leading genAI systems in becoming GenAIPAs: ChatGPT, Bard, and Bing AI. Our results demonstrate significant promise in genAI capabilities in the privacy domain while also highlighting challenges in managing complex queries, ensuring consistency, and verifying source accuracy.

相關內容

機器學習系統設計系統評估標準

Large vision-language models (VLMs) have garnered increasing interest in autonomous driving areas, due to their advanced capabilities in complex reasoning tasks essential for highly autonomous vehicle behavior. Despite their potential, research in autonomous systems is hindered by the lack of datasets with annotated reasoning chains that explain the decision-making processes in driving. To bridge this gap, we present Reason2Drive, a benchmark dataset with over 600K video-text pairs, aimed at facilitating the study of interpretable reasoning in complex driving environments. We distinctly characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps, and the question-answer pairs are automatically collected from a diverse range of open-source outdoor driving datasets, including nuScenes, Waymo and ONCE. Moreover, we introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems, addressing the semantic ambiguities of existing metrics such as BLEU and CIDEr. Based on the proposed benchmark, we conduct experiments to assess various existing VLMs, revealing insights into their reasoning capabilities. Additionally, we develop an efficient approach to empower VLMs to leverage object-level perceptual elements in both feature extraction and prediction, further enhancing their reasoning accuracy. The code and dataset will be released.

Graph convolutional networks (GCNs) have been widely used and achieved remarkable results in skeleton-based action recognition. We think the key to skeleton-based action recognition is a skeleton hanging in frames, so we focus on how the Graph Convolutional Convolution networks learn different topologies and effectively aggregate joint features in the global temporal and local temporal. In this work, we propose three Channel-wise Tolopogy Graph Convolution based on Channel-wise Topology Refinement Graph Convolution (CTR-GCN). Combining CTR-GCN with two joint cross-attention modules can capture the upper-lower body part and hand-foot relationship skeleton features. After that, to capture features of human skeletons changing in frames we design the Temporal Attention Transformers to extract skeletons effectively. The Temporal Attention Transformers can learn the temporal features of human skeleton sequences. Finally, we fuse the temporal features output scale with MLP and classification. We develop a powerful graph convolutional network named Spatial Temporal Effective Body-part Cross Attention Transformer which notably high-performance on the NTU RGB+D, NTU RGB+D 120 datasets. Our code and models are available at //github.com/maclong01/STEP-CATFormer

Achieving an immersive experience enabling users to explore virtual environments with six degrees of freedom (6DoF) is essential for various applications such as virtual reality (VR). Wide-baseline panoramas are commonly used in these applications to reduce network bandwidth and storage requirements. However, synthesizing novel views from these panoramas remains a key challenge. Although existing neural radiance field methods can produce photorealistic views under narrow-baseline and dense image captures, they tend to overfit the training views when dealing with \emph{wide-baseline} panoramas due to the difficulty in learning accurate geometry from sparse $360^{\circ}$ views. To address this problem, we propose PanoGRF, Generalizable Spherical Radiance Fields for Wide-baseline Panoramas, which construct spherical radiance fields incorporating $360^{\circ}$ scene priors. Unlike generalizable radiance fields trained on perspective images, PanoGRF avoids the information loss from panorama-to-perspective conversion and directly aggregates geometry and appearance features of 3D sample points from each panoramic view based on spherical projection. Moreover, as some regions of the panorama are only visible from one view while invisible from others under wide baseline settings, PanoGRF incorporates $360^{\circ}$ monocular depth priors into spherical depth estimation to improve the geometry features. Experimental results on multiple panoramic datasets demonstrate that PanoGRF significantly outperforms state-of-the-art generalizable view synthesis methods for wide-baseline panoramas (e.g., OmniSyn) and perspective images (e.g., IBRNet, NeuRay).

We investigate the problem of decentralized multi-agent navigation tasks, where multiple agents need to reach initially unassigned targets in a limited time. Classical planning-based methods suffer from expensive computation overhead at each step and offer limited expressiveness for complex cooperation strategies. In contrast, reinforcement learning (RL) has recently become a popular paradigm for addressing this issue. However, RL struggles with low data efficiency and cooperation when directly exploring (nearly) optimal policies in the large search space, especially with an increased agent number (e.g., 10+ agents) or in complex environments (e.g., 3D simulators). In this paper, we propose Multi-Agent Scalable GNN-based P lanner (MASP), a goal-conditioned hierarchical planner for navigation tasks with a substantial number of agents. MASP adopts a hierarchical framework to divide a large search space into multiple smaller spaces, thereby reducing the space complexity and accelerating training convergence. We also leverage graph neural networks (GNN) to model the interaction between agents and goals, improving goal achievement. Besides, to enhance generalization capabilities in scenarios with unseen team sizes, we divide agents into multiple groups, each with a previously trained number of agents. The results demonstrate that MASP outperforms classical planning-based competitors and RL baselines, achieving a nearly 100% success rate with minimal training data in both multi-agent particle environments (MPE) with 50 agents and a quadrotor 3-dimensional environment (OmniDrones) with 20 agents. Furthermore, the learned policy showcases zero-shot generalization across unseen team sizes.

Relational databases are extensively utilized in a variety of modern information system applications, and they always carry valuable data patterns. There are a huge number of data mining or machine learning tasks conducted on relational databases. However, it is worth noting that there are limited machine learning models specifically designed for relational databases, as most models are primarily tailored for single table settings. Consequently, the prevalent approach for training machine learning models on data stored in relational databases involves performing feature engineering to merge the data from multiple tables into a single table and subsequently applying single table models. This approach not only requires significant effort in feature engineering but also destroys the inherent relational structure present in the data. To address these challenges, we propose a novel framework called Graph-based Feature Synthesis (GFS). GFS formulates the relational database as a heterogeneous graph, thereby preserving the relational structure within the data. By leveraging the inductive bias from single table models, GFS effectively captures the intricate relationships inherent in each table. Additionally, the whole framework eliminates the need for manual feature engineering. In the extensive experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases, demonstrating its superior performance.

The autonomous driving community has shown significant interest in 3D occupancy prediction, driven by its exceptional geometric perception and general object recognition capabilities. To achieve this, current works try to construct a Tri-Perspective View (TPV) or Occupancy (OCC) representation extending from the Bird-Eye-View perception. However, compressed views like TPV representation lose 3D geometry information while raw and sparse OCC representation requires heavy but reducant computational costs. To address the above limitations, we propose Compact Occupancy TRansformer (COTR), with a geometry-aware occupancy encoder and a semantic-aware group decoder to reconstruct a compact 3D OCC representation. The occupancy encoder first generates a compact geometrical OCC feature through efficient explicit-implicit view transformation. Then, the occupancy decoder further enhances the semantic discriminability of the compact OCC representation by a coarse-to-fine semantic grouping strategy. Empirical experiments show that there are evident performance gains across multiple baselines, e.g., COTR outperforms baselines with a relative improvement of 8%-15%, demonstrating the superiority of our method.

Optical tactile sensors have recently become popular. They provide high spatial resolution, but struggle to offer fine temporal resolutions. To overcome this shortcoming, we study the idea of replacing the RGB camera with an event-based camera and introduce a new event-based optical tactile sensor called Evetac. Along with hardware design, we develop touch processing algorithms to process its measurements online at 1000 Hz. We devise an efficient algorithm to track the elastomer's deformation through the imprinted markers despite the sensor's sparse output. Benchmarking experiments demonstrate Evetac's capabilities of sensing vibrations up to 498 Hz, reconstructing shear forces, and significantly reducing data rates compared to RGB optical tactile sensors. Moreover, Evetac's output and the marker tracking provide meaningful features for learning data-driven slip detection and prediction models. The learned models form the basis for a robust and adaptive closed-loop grasp controller capable of handling a wide range of objects. We believe that fast and efficient event-based tactile sensors like Evetac will be essential for bringing human-like manipulation capabilities to robotics. The sensor design is open-sourced at //sites.google.com/view/evetac .

With the rising popularity of Large Language Models (LLMs), there has been an increasing interest in compression techniques that enable their efficient deployment. This study focuses on the Post-Training Quantization (PTQ) of LLMs. Drawing from recent advances, our work introduces QuantEase, a layer-wise quantization framework where individual layers undergo separate quantization. The problem is framed as a discrete-structured non-convex optimization, prompting the development of algorithms rooted in Coordinate Descent (CD) techniques. These CD-based methods provide high-quality solutions to the complex non-convex layer-wise quantization problems. Notably, our CD-based approach features straightforward updates, relying solely on matrix and vector operations, circumventing the need for matrix inversion or decomposition. We also explore an outlier-aware variant of our approach, allowing for retaining significant weights (outliers) with complete precision. Our proposal attains state-of-the-art performance in terms of perplexity and zero-shot accuracy in empirical evaluations across various LLMs and datasets, with relative improvements up to 15% over methods such as GPTQ. Leveraging careful linear algebra optimizations, QuantEase can quantize models like Falcon-180B on a single NVIDIA A100 GPU in $\sim$3 hours. Particularly noteworthy is our outlier-aware algorithm's capability to achieve near or sub-3-bit quantization of LLMs with an acceptable drop in accuracy, obviating the need for non-uniform quantization or grouping techniques, improving upon methods such as SpQR by up to two times in terms of perplexity.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

北京阿比特科技有限公司