亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Designers rely on visual search to explore and develop ideas in early design stages. However, designers can struggle to identify suitable text queries to initiate a search or to discover images for similarity-based search that can adequately express their intent. We propose GenQuery, a novel system that integrates generative models into the visual search process. GenQuery can automatically elaborate on users' queries and surface concrete search directions when users only have abstract ideas. To support precise expression of search intents, the system enables users to generatively modify images and use these in similarity-based search. In a comparative user study (N=16), designers felt that they could more accurately express their intents and find more satisfactory outcomes with GenQuery compared to a tool without generative features. Furthermore, the unpredictability of generations allowed participants to uncover more diverse outcomes. By supporting both convergence and divergence, GenQuery led to a more creative experience.

相關內容

在機器學習中,生成模型可以用來直接對數據建模(例如根據某個變量的概率密度函數進行數據采樣),也可以用來建立變量間的條件概率分布。條件概率分布可以由生成模型根據貝葉斯定理形成。

Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at //omriavrahami.com/the-chosen-one

Generative diffusion models, including Stable Diffusion and Midjourney, can generate visually appealing, diverse, and high-resolution images for various applications. These models are trained on billions of internet-sourced images, raising significant concerns about the potential unauthorized use of copyright-protected images. In this paper, we examine whether it is possible to determine if a specific image was used in the training set, a problem known in the cybersecurity community and referred to as a membership inference attack. Our focus is on Stable Diffusion, and we address the challenge of designing a fair evaluation framework to answer this membership question. We propose a methodology to establish a fair evaluation setup and apply it to Stable Diffusion, enabling potential extensions to other generative models. Utilizing this evaluation setup, we execute membership attacks (both known and newly introduced). Our research reveals that previously proposed evaluation setups do not provide a full understanding of the effectiveness of membership inference attacks. We conclude that the membership inference attack remains a significant challenge for large diffusion models (often deployed as black-box systems), indicating that related privacy and copyright issues will persist in the foreseeable future.

The problem of data sparsity has long been a challenge in recommendation systems, and previous studies have attempted to address this issue by incorporating side information. However, this approach often introduces side effects such as noise, availability issues, and low data quality, which in turn hinder the accurate modeling of user preferences and adversely impact recommendation performance. In light of the recent advancements in large language models (LLMs), which possess extensive knowledge bases and strong reasoning capabilities, we propose a novel framework called LLMRec that enhances recommender systems by employing three simple yet effective LLM-based graph augmentation strategies. Our approach leverages the rich content available within online platforms (e.g., Netflix, MovieLens) to augment the interaction graph in three ways: (i) reinforcing user-item interaction egde, (ii) enhancing the understanding of item node attributes, and (iii) conducting user node profiling, intuitively from the natural language perspective. By employing these strategies, we address the challenges posed by sparse implicit feedback and low-quality side information in recommenders. Besides, to ensure the quality of the augmentation, we develop a denoised data robustification mechanism that includes techniques of noisy implicit feedback pruning and MAE-based feature enhancement that help refine the augmented data and improve its reliability. Furthermore, we provide theoretical analysis to support the effectiveness of LLMRec and clarify the benefits of our method in facilitating model optimization. Experimental results on benchmark datasets demonstrate the superiority of our LLM-based augmentation approach over state-of-the-art techniques. To ensure reproducibility, we have made our code and augmented data publicly available at: //github.com/HKUDS/LLMRec.git

Code clone detection is about finding out similar code fragments, which has drawn much attention in software engineering since it is important for software maintenance and evolution. Researchers have proposed many techniques and tools for source code clone detection, but current detection methods concentrate on analyzing or processing code samples individually without exploring the underlying connections among code samples. In this paper, we propose Gitor to capture the underlying connections among different code samples. Specifically, given a source code database, we first tokenize all code samples to extract the pre-defined individual information. After obtaining all samples individual information, we leverage them to build a large global sample graph where each node is a code sample or a type of individual information. Then we apply a node embedding technique on the global sample graph to extract all the samples vector representations. After collecting all code samples vectors, we can simply compare the similarity between any two samples to detect possible clone pairs. More importantly, since the obtained vector of a sample is from a global sample graph, we can combine it with its own code features to improve the code clone detection performance. To demonstrate the effectiveness of Gitor, we evaluate it on a widely used dataset namely BigCloneBench. Our experimental results show that Gitor has higher accuracy in terms of code clone detection and excellent execution time for inputs of various sizes compared to existing state-of-the-art tools. Moreover, we also evaluate the combination of Gitor with other traditional vector-based clone detection methods, the results show that the use of Gitor enables them detect more code clones with higher F1.

In modern VLSI design flow, the register-transfer level (RTL) stage is a critical point, where designers define precise design behavior with hardware description languages (HDLs) like Verilog. Since the RTL design is in the format of HDL code, the standard way to evaluate its quality requires time-consuming subsequent synthesis steps with EDA tools. This time-consuming process significantly impedes design optimization at the early RTL stage. Despite the emergence of some recent ML-based solutions, they fail to maintain high accuracy for any given RTL design. In this work, we propose an innovative pre-synthesis PPA estimation framework named MasterRTL. It first converts the HDL code to a new bit-level design representation named the simple operator graph (SOG). By only adopting single-bit simple operators, this SOG proves to be a general representation that unifies different design types and styles. The SOG is also more similar to the target gate-level netlist, reducing the gap between RTL representation and netlist. In addition to the new SOG representation, MasterRTL proposes new ML methods for the RTL-stage modeling of timing, power, and area separately. Compared with state-of-the-art solutions, the experiment on a comprehensive dataset with 90 different designs shows accuracy improvement by 0.33, 0.22, and 0.15 in correlation for total negative slack (TNS), worst negative slack (WNS), and power, respectively.

Motion planning is a computational problem that finds a sequence of valid trajectories, often based on surrounding agents' forecasting, environmental understanding, and historical and future contexts. It can also be viewed as a game in which agents continuously plan their next move according to other agents' intentions and the encountering environment, further achieving their ultimate goals through incremental actions. To model the dynamic planning and interaction process, we propose a novel framework, DeepEMplanner, which takes the stepwise interaction into account for fine-grained behavior learning. The ego vehicle maximizes each step motion to reach its eventual driving outcome based on the stepwise expectation from agents and its upcoming road conditions. On the other hand, the agents also follow the same philosophy to maximize their stepwise behavior under the encountering environment and the expectations from ego and other agents. Our DeepEMplanner models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Expectation and Maximization processes. Further, we design ego-to-agents, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. Experiments on the nuScenes benchmark show that our approach achieves state-of-the-art results.

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司